【题目】设函数.
(1)讨论函数的单调性;
(2)如果对所有的,都有,求的取值范围.
【答案】(1)函数在上单调递减,在上单调递增.(2)
【解析】试题分析:
(1)求出导函数,解不等式得增区间,解不等式得减区间;
(2)不等式恒成立,可以变形为恒成立,因此只要求出的最大值,由最大值小于或等于0可得,也要可变形为,只要求得的最大值即可,这些最值可通过导数知识进行求解.
试题解析:
(1)的定义域为, ,
当时, ,当时, ,
所以函数在上单调递减,在上单调递增.
(2)法一:设,则,
因为,所以.
(i)当时, , ,所以在上单调递减,而,
所以对所有的, ,即;
(ii)当时, ,若,则, 单调递增,
而,所以当时, ,即;
(iii)当时, , ,所以在单调递增,而,
所以对所有的, ,即;
综上, 的取值范围是.
法二:当时, ,
令,则,
令,则,当时, ,
于是在上为减函数,从而,因此,
于是在上为减函数,所以当时有最大值,
故,即的取值范围是.
科目:高中数学 来源: 题型:
【题目】(文)已知矩形ABB1A1是圆柱体的轴截面,O、O1分别是下底面圆和上底面圆的圆心,母线长与底面圆的直径长之比为2:1,且该圆柱体的体积为32π,如图所示.
(1)求圆柱体的侧面积S侧的值;
(2)若C1是半圆弧 的中点,点C在半径OA上,且OC= OA,异面直线CC1与BB1所成的角为θ,求sinθ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图:已知四棱锥P﹣ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中点,求证:
(1)PC∥平面EBD.
(2)平面PBC⊥平面PCD.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着人口老龄化的到来,我国的劳动力人口在不断减少,“延迟退休”已经成为人们越来越关注的话题,为了解公众对“延迟退休”的态度,某校课外研究性学习小组在某社区随机抽取了50人进行调查,将调查情况进行整理后制成下表:
年龄 | [20,25) | [25,30) | [30,35) | [35,40) | [40,45) |
人数 | 4 | 5 | 8 | 5 | 3 |
年龄 | [45,50) | [50,55) | [55,60) | [60,65) | [65,70) |
人数 | 6 | 7 | 3 | 5 | 4 |
经调查年龄在[25,30),[55,60)的被调查者中赞成“延迟退休”的人数分别是3人和2人.现从这两组的被调查者中各随机选取2人,进行跟踪调查.
(I)求年龄在[25,30)的被调查者中选取的2人都赞成“延迟退休”的概率;
(II)若选中的4人中,不赞成“延迟退休”的人数为,求随机变量的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=x3+2x2﹣4x+5在[﹣4,1]上的最大值和最小值分别是( )
A.13,
B.4,﹣11
C.13,﹣11
D.13,最小值不确定
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆和直线,直线, 都经过圆外定点.
(1)若直线与圆相切,求直线的方程;
(2)若直线与圆相交于两点,与交于点,且线段的中点为,
求证: 为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题共14分)
如图,在四棱锥中, 平面,底面是菱形, .
(Ⅰ)求证: 平面
(Ⅱ)若求与所成角的余弦值;
(Ⅲ)当平面与平面垂直时,求的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在长方体中,,是棱上的一点.
(1)求证:平面;
(2)求证:;
(3)若是棱的中点,在棱上是否存在点,使得平面?若存在,求出线段的长;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com