精英家教网 > 高中数学 > 题目详情
12.下列各组向量中可以作为基底的是(  )
A.$\overrightarrow{a}$=(0,0),$\overrightarrow{b}$=(1,-2)B.$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(3,4)C.$\overrightarrow{a}$=(3,5),$\overrightarrow{b}$=(6,10)D.$\overrightarrow{a}$=(2,-3),$\overrightarrow{b}$=(-2,3)

分析 判断向量是否共线,即可推出结果.

解答 解:由题意可知$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(3,4)不共线,可以作为基底.
故选:B.

点评 本题考查共面向量基本定理的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.对抛物线y=4x2,下列描述正确的是(  )
A.开口向右,焦点为(1,0)B.开口向上,焦点为(0,1)
C.开口向上,焦点为(0,$\frac{1}{16}$)D.开口向右,焦点为($\frac{1}{16}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=m(x-4)2+2lnx,其中m∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于(0,6)
(1)求m的值;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.一梯形的直观图是一个如图所示的等腰梯形,且此梯形的面积为$\sqrt{2}$,则原梯形的面积为(  )
A.2B.$\sqrt{2}$C.2$\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知正方体ABCD-A1B1C1D1
(1)哪些棱所在直线与直线BA1是异面直线?
(2)哪些棱所在的直线与AA1垂直?
(3)求A1B与B1D1所成角;
(4)求AC与BD1所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.若F1,F2是双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1的两个焦点,P是双曲线上的点,且|PF1|•|PF2|=32,试求△F1PF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知关于x的方程x2+ax+2=0.
(1)若方程有两个大于1的不等实根,求实数a的取值范围;
(2)若两实根x1,x2满足0<x1<1<x2<4,求实数a的取值范围;
(3)若两实根x1,x2满足1<x1<x2<4,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设变量x,y满足|x-a|+|y-a|≤1,若2x-y的最大值是5,则实数a的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知tanα=-$\frac{4}{3}$,sinβ=$\frac{3}{5}$,且α、β∈($\frac{π}{2}$,π),求sin(α-β)的值.

查看答案和解析>>

同步练习册答案