精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点.

(1)求证:

(2)平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC?若存在,求SEEC;若不存在,试说明理由.

【答案】(1)证明见解析;(2)存在,2:1

【解析】

1)先证明AC⊥面SBD,然后利用线面垂直的性质证明ACSD

2)利用线面平行的性质定理确定E的位置,然后求出SEEC的值.

1)证明:连BD,设ACBDO,由题意SOAC

在正方形ABCD中,ACBD

所以AC⊥面SBD

所以ACSD

2)解:若SD⊥平面PAC

SDOP

设正方形ABCD的边长为a

SDOD

OD2PDSD

可得PD

故可在SP上取一点N,使PNPD

NPC的平行线与SC的交点即为E,连BN

在△BDN中知BNPO

又由于NEPC,故平面BEN∥面PAC

BE∥面PAC

由于SNNP21

SEEC21

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知某摸球游戏的规则如下:从装有5个大小、形状完全相同的小球的盒中摸球(其中3个红球、2个黄球),每次摸一个球记录颜色并放回,若摸出红球记1分,摸出黄球记2分.

1)求摸球三次得分为5的概率;

2)设ξ为摸球三次所得的分数,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《周髀算经》中有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,则小满日影长为(

A.1.5B.2.5C.3.5D.4.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若存在正数xy,使得,其中e为自然对数的底数,则实数的取值范围是_____________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥的底面是菱形.

1)若,求证:平面

2分别是上的点,若平面,求的值;

3)若,平面平面,判断是否为等腰三角形?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分别求适合下列条件的椭圆的标准方程.

(1)焦点在坐标轴上,且经过点A (,-2),B(-2,1)

(2)与椭圆有相同焦点且经过点M(,1).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,求曲线在点处的切线;

2)若函数在其定义域内为增函数,求正实数的取值范围;

3)设函数,若在上至少存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[2019·清远期末]一只红铃虫的产卵数和温度有关,现收集了4组观测数据列于下表中,根据数据作出散点图如下:

温度

20

25

30

35

产卵数/个

5

20

100

325

(1)根据散点图判断哪一个更适宜作为产卵数关于温度的回归方程类型?(给出判断即可,不必说明理由)

(2)根据(1)的判断结果及表中数据,建立关于的回归方程(数字保留2位小数);

(3)要使得产卵数不超过50,则温度控制在多少以下?(最后结果保留到整数)

参考数据:

5

20

100

325

1.61

3

4.61

5.78

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆上一点与两焦点构成的三角形的周长为,离心率为 .

(1)求椭圆的方程;

(2)设椭圆C的右顶点和上顶点分别为AB,斜率为的直线l与椭圆C交于PQ两点(点P在第一象限).若四边形APBQ面积为,求直线l的方程.

查看答案和解析>>

同步练习册答案