精英家教网 > 高中数学 > 题目详情
12.如图,在四边形ABCD中,AB=4,BC=3,CD=2,DA=1,四边形的四个角分别记为A,B,C,D.
(1)若A+C=π,求BD的长度.
(2)若△ABD和△BCD的面积分别记为S,T,求S2+T2的最大值.

分析 (1))△ABD中,BD2=16+1-2×4×1×cosA,①,△BCD中,BD2=9+4-2×3×2×cosC,②,A+C=π,①+②,可求BD的长度.
(2)先计算S,T,由(1)可得2cosA-3cosC=1,利用配方法求S2+T2的最大值.

解答 解:(1)△ABD中,BD2=16+1-2×4×1×cosA,①
△BCD中,BD2=9+4-2×3×2×cosC,②
∵A+C=π,
∴①+②,可得2BD2=30,∴BD=$\sqrt{15}$;
(2)由(1)可得2cosA-3cosC=1,
S=$\frac{1}{2}•4•1•sinA$=2sinA,T=$\frac{1}{2}•3•2•sinC$=3sinC,
∴S2+T2=4sin2A+9sin2C=4-(3cosC+1)2+9sin2C=-18cos2C-6cosC+12=-18(cosC+$\frac{1}{6}$)2+12.5,
∴cosC=-$\frac{1}{6}$,S2+T2的最大值为12.5.

点评 本题考查余弦定理的运用,考查三角形面积的计算,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图,四棱锥P-ABCD的底面为正方形,PA⊥底面ABCD,E、F分别为AB、PD的中点.
(1)求证:AF∥平面PCE;
(2)求证:平面PAC⊥平面PBD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数y=sinωx(ω>0)在一个周期内的图象如图所示,要得到函数$y=sin(\frac{1}{2}x+\frac{π}{12})$的图象,则需将函数y=sinωx的图象向左平移$\frac{π}{6}$个单位.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,角A,B,C所对的边为a,b,c,角A为锐角,若sin$\frac{A}{2}$cos$\frac{A}{2}$$-\frac{\sqrt{2}}{3}$=0.
(1)求cosA的大小;
(2)若a=1,b+c=2,求bc.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设a>0且a≠1,f(x)=ax+a-x,g(x)=ax-a-x,且f(x)•f(y)=8,g(x)•g(y)=4,
(1)求[g(x)]2-[f(x)]2的值;
(2)求$\frac{f(x+y)}{f(x-y)}$的值;
(3)求ax及ay的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知关于x的方程ax2+bx+c=0,其中2a+3b+6c=0.
(1)当a=0,且b≠0时,求方程的根;
(2)当a>0,c<0时,求证:方程有一根在(0,1)内.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列四个命题中,真命题是(  )
A.平面就是平行四边形
B.空间任意三点可以确定一个平面
C.两两相交的三条直线可以确定一个平面
D.空间四点不共面,则其中任意三点不共线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.-$\frac{5}{17}$与-$\frac{7}{23}$中较大的数是-$\frac{7}{23}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.等差数列{an}和{bn}的前n项和分别为Sn与Tn,对一切自然数n,都有$\frac{S_n}{T_n}$=$\frac{2n}{3n+1}$,则$\frac{{{a_2}+{a_8}}}{{{b_2}+{b_8}}}$等于(  )
A.$\frac{2}{3}$B.$\frac{20}{31}$C.$\frac{9}{14}$D.$\frac{11}{17}$

查看答案和解析>>

同步练习册答案