精英家教网 > 高中数学 > 题目详情

已知函数.
(1)当时,求的单调区间;
(2)若不等式有解,求实数m的取值菹围;
(3)证明:当a=0时,.

(1)参考解析;(2);(3)参考解析

解析试题分析:(1)由于.需求的单调区间,通过对函数求导,在讨论的范围即可得函数的单调区间.
(2)本小题可等价转化为,求实数m的取值菹围,使得有解,等价于小于函数的最小值.所以对函数求导,由导函数的解析式,通过应用基本不等式,即可得到函数的单调性,从而得到最小值.即可得到结论.
(Ⅲ)由于)当时,.本小题解法通过构造.即两个函数的差,通过等价证明函数的最小值与函数的最大值的差大于2.所以对两个函数分别研究即可得到结论.
试题解析:(1)的定义域是时,,所以在单调递增;时,由,解得.则当时.,所以单调递增.当时,,所以单调递减.综上所述:当时,单调递增;当时,上单调递增,在单调递减.
(2)由题意:有解,即有解,因此只需有解即可,设,因为,且,所以,即.故上递减,所以.
(Ⅲ)当时,的公共定义域为,设.因为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数,其中为正整数,均为常数,曲线处的切线方程为.
(1)求的值;     
(2)求函数的最大值;
(3)证明:对任意的都有.(为自然对数的底)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,用表示时的函数值中整数值的个数.
(1)求的表达式.
(2)设,求.
(3)设,若,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数在点处的切线方程为.
(1)求的值;
(2)当时,恒成立,求实数的取值范围;
(3)证明:当,且时,.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)若,求x的范围;
(2)求的最大值以及此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数的单调区间和极值;
(2)若上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,判断的单调性,并用定义证明.
(2)若对任意,不等式 恒成立,求的取值范围;
(3)讨论零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)求函数f(x)=x3-2x2-x+2的零点;
(2)已知函数f(x)=ln(x+1)-,试求函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2(x≠0,a∈R).
(1)判断函数f(x)的奇偶性;
(2)若f(x)在区间[2,+∞)上是增函数,求实数a的取值范围.

查看答案和解析>>

同步练习册答案