精英家教网 > 高中数学 > 题目详情

定义在R上的偶函数f(x)满足f(-x)=f(2+x),且在[-1,0]上单调递增,设a=f(3),数学公式,c=f(2),则a,b,c大小关系是


  1. A.
    a>b>c
  2. B.
    a>c>b
  3. C.
    b>c>a
  4. D.
    c>b>a
D
分析:先根据条件推断出函数为以2为周期的函数,根据f(x)是偶函数,在[-1,0]上单调递增推断出在[0,1]上是减函数.减函数,进而利用周期性使a=f(3),b=f(),c=f(2)=f(0)进而利用自变量的大小求得函数的大小,则a,b,c的大小可知.
解答:由条件f(-x)=f(2+x),可以得:
f(x+2)=f(-x)=f(x),所以f(x)是周期函数.周期为2.
又因为f(x)是偶函数,所以图象在[0,1]上是减函数.
a=f(3)=f(1+2)=f(1),
b=f()=f( -2)=f(2-)=f(
c=f(2)=f(0)
0<<1
所以c>b>a.
故选D.
点评:本题主要考查了函数单调性,周期性和奇偶性的应用.考查了学生分析和推理的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x)是最小正周期为π的周期函数,且当x∈[0,
π
2
]
时,f(x)=sinx,则f(
3
)
的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

7、定义在R上的偶函数f(x),当x≥0时有f(2+x)=f(x),且x∈[0,2)时,f(x)=2x-1,则f(2010)+f(-2011)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x),满足f(x+2)=f(x),且f(x)在[-3,-2]上是减函数,若α、β是锐角三角形中两个不相等的锐角,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x)满足f(x+1)=-f(x)且f(x)在[-1,0]上是增函数,给出下列四个命题:
①f(x)是周期函数;
②f(x)的图象关于x=l对称;
③f(x)在[l,2l上是减函数;
④f(2)=f(0),
其中正确命题的序号是
①②④
①②④
.(请把正确命题的序号全部写出来)

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知定义在R上的偶函数f(x).当x≥0时,f(x)=
-x+2x-1
且f(1)=0.
(Ⅰ)求函数f(x)的解析式并画出函数的图象;
(Ⅱ)写出函数f(x)的值域.

查看答案和解析>>

同步练习册答案