精英家教网 > 高中数学 > 题目详情
已知等比数列{an}满足2a1+a3=3a2,且a3+2是a2,a4的等差中项,n∈N*
(1)求数列{an}的通项公式;
(2)若bn=an+log2an,Sn为数列{bn}的前n项和,求使Sn-2n+1-8≤0成立的n的取值集合.
考点:数列的求和,等比数列的通项公式
专题:综合题
分析:(1)利用等比数列{an}满足2a1+a3=3a2,且a3+2是a2,a4的等差中项,建立方程,求出q,a1,即可求数列{an}的通项公式;
(2)利用分组求和,再解不等式,即可得出结论.
解答: 解:(1)∵a3+2是a2和a4的等差中项,∴2(a3+2)=a2+a4
∵2a1+a3=3a2,∴q=2(q=1舍去),a1=2
∴an=a1qn-1=2n….(6分)
(2)bn=an+log2an=2n+n.…(7分)
所以Sn=(2+4+…+2n)+(1+2+…+n)=
2(1-2n)
1-2
+
n(1+n)
2
=2n+1-2+
1
2
n+
1
2
n2
 ….(10分)
因为Sn-2n+1-8≤0,所以n2+n-20≤0
解得-5≤n≤4,故所求的n的取值集合为{1,2,3,4}….(12分)
点评:本题考查等比数列求通项公式和等差、等比中项的概念,等差数列和等比数列之间的相互转化,考查运算能力,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=loga(2-ax)在(0,4)上为增函数,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的右焦点F2与抛物线y2=4
3
x的焦点重合,过F2作与x轴垂直的直线与椭圆交于S、T两点,与抛物线交于C、D两点,且
|CD|
|ST|
=4
3

(Ⅰ)求椭圆E的方程;
(Ⅱ)若过点M(3,0)的直线l与椭圆E交于两点A、B,设P为椭圆上一点,且满足
OA
+
OB
=t
OP
(O为坐标原点),求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,点P到两点(0,
3
)、(0,-
3
)的距离之和等于4.设点P的轨迹为C.
(1)写出C的方程;
(2)设直线y=kx+1与C交于A、B两点,k为何值时
OA
OB
?此时|
AB
|的值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

锐角△ABC中,角A,B所对的边长分别为a,b,若2asinB=b,则角A等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x),当x>0时,f(x)=-x2+2x.函数y=g(x)的定义域为[a,b],值域为[
1
b
1
a
],其中a、b≠0.在x∈[a,b]时f(x)=g(x).
(1)求f(x)解析式;
(2)求a、b的值;
(3)是否存在实数m,使{(x,y)|y=g(x),x∈[a,b]}∩{(x,y)|y=
1
4
x2+m}≠∅?若存在,求出m的值;若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线y=
π
4
的倾斜角为(  )
A、0
B、
π
2
C、
π
4
D、不存在

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=x3,y=lnx,y=5x在(0,+∞)上增长最快的是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数y=f(x)的图象过点(2,
1
2
),则函数的单调递减区间是
 

查看答案和解析>>

同步练习册答案