精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3+ax2+bx+5的图象在x=1处的切线l斜率为3,当x=
23
时,有极值.
(1)求f(x)的解析式;
(2)写出f(x)的单调区间;
(3)求f(x)在[-3,1]上的最大值和最小值.
分析:(1)对其进行求导,根据题意曲线y=f(x)在点(1,f(1))处的切线斜率为3,可得f′(1)=3,若x=
2
3
时,y=f(x) 有极值可f′(
2
3
)=0,由此可以求出f(x)的解析式;
(2)利用导数研究得出单调区间即可.
(3)考察当变化时,f(x),f′(x)变化情况求出最值.
解答:解:(1)f′(x)=3x2+2ax+b,
由题意,得
f′(
2
3
)=3×(
2
3
)2+2a×
2
3
+b=0
f′(1)=3×12+2a×1+b=3
,解
a=2
b=-4

所以,f(x)=x3+2x2-4x+5
(2)f′(x)=3x2+4x-4=(x+2)(3x-2),
令f′(x)=0,得x1=-2,x2=
2
3

当x<-2,或x>
2
3
时,f′(x)>0,单增区间是(-∞,-2),或(
2
3
,+∞)
当-2<x<
2
3
时,f′(x)<0,单减区间是(-2,
2
3

(3)当变化时,f(x),f′(x)变化情况如下表
x -3 (-3,-2) -2  (-2,
2
3
2
3
2
3
,1)
1
f′(x) + 0 - 0 +
f(x) 极大值 极小值
函数值 -2 13
95
27
4
由表可知,f(x)最小值=f(3)=-2,f(x)最大值=f(-2)=13
点评:此题主要考查利用导数研究函数的单调区间,最值问题,属于常规题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案