精英家教网 > 高中数学 > 题目详情

【题目】如图,在正方体ABCD﹣A1B1C1D1中,E是棱CC1的中点.
(1)证明:AC1∥平面BDE;
(2)证明:AC1⊥BD.

【答案】
(1)证明:连接AC交BD于O,连接OE,

∵ABCD是正方形,

∴O为AC的中点,

∵E是棱CC1的中点,

∴AC1∥OE.

又∵AC1平面BDE,OE平面BDE,

∴AC1∥平面BDE


(2)证明:

∵ABCD是正方形,

∴AC⊥BD.

∵CC1⊥平面ABCD,且BD平面ABCD,

∴CC1⊥BD.

又∵CC1∩AC=C,

∴BD⊥平面ACC1

又∵AC1平面ACC1

∴AC1⊥BD.


【解析】(1)根据线面平行的判定定理证明:AC1∥平面BDE;(2)根据线面垂直的性质,先证明BD⊥平面ACC1 , 然后证明AC1⊥BD.
【考点精析】解答此题的关键在于理解直线与平面平行的判定的相关知识,掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行,以及对直线与平面垂直的性质的理解,了解垂直于同一个平面的两条直线平行.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在[(﹣2,0)∪(0,2)]上的奇函数,当x>0,f(x)的图象如图所示,那么f(x)的值域是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若曲线在点处的切线方程为,求ab的值;

2)如果是函数的两个零点, 为函数的导数,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)若 ,且函数 在区间 上单调递增,求实数a的范围;

2)若函数有两个极值点 且存在 满足 ,令函数 ,试判断 零点的个数并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设A={﹣4,2a﹣1,a2},B={a﹣1,1﹣a,9},已知A∩B={9},求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,ABCD为矩形,△PAD为等腰直角三角形,∠APD=90°,面PAD⊥面ABCD,且AB=1,AD=2,E、F分别为PC和BD的中点.
(1)证明:EF∥面PAD;
(2)证明:面PDC⊥面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中, ,点边的中点,将沿折起,使平面平面,连接 ,得到如图所示的几何体.

(Ⅰ)求证: 平面

(Ⅱ)若 与其在平面内的正投影所成角的正切值为,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】田忌和齐王赛马是历史上有名的故事,设齐王的三匹马分别为A、B、C,田忌的三匹马分别为a、b、c.三匹马各比赛一次,胜两场者为获胜.若这六匹马比赛的优劣程度可以用以下不等式表示:A>a>B>b>C>c. (Ⅰ)如果双方均不知道对方马的出场顺序,求田忌获胜的概率;
(Ⅱ)为了得到更大的获胜概率,田忌预先派出探子到齐王处打探实情,得知齐王第一场必出上等马.那么,田忌应怎样安排出马的顺序,才能使自己获胜的概率最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中, ,点分别为的中点.

(1)证明: 平面

2)若,求二面角的余弦值.

查看答案和解析>>

同步练习册答案