精英家教网 > 高中数学 > 题目详情

【题目】P是抛物线上一动点,则点P到点的距离与P到直线的距离和的最小值是(

A.B.C.3D.

【答案】D

【解析】

先求出焦点及准线方程,过PPN 垂直直线x=﹣1,有|PN||PF|,连接FA,有|FA||PA|+|PF|,从而只求|FA|即可.

y24xp21,所以焦点为F10),准线x=﹣1

PPN 垂直直线x=﹣1,根据抛物线的定义,

抛物线上一点到准线的距离等于到焦点的距离,

所以有|PN||PF|,连接FA,有|FA||PA|+|PF|

所以PAF与抛物线的交点,点P到点A0,﹣1)的距离与点P到直线x=﹣1的距离之和的最小值为|FA|

所以P到点的距离与P到直线的距离和的最小值是.

故选D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,其中一个焦点F在直线.

1)求椭圆C的方程;

2)若直线和直线与椭圆分别相交于点,求的值;

3)若直线与椭圆交于PQ两点,试求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=aln x (aR).

(1)a=1时,求f(x)x[1,+∞)内的最小值;

(2)f(x)存在单调递减区间,求a的取值范围;

(3)求证ln(n+1)> (nN*).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,四边形ABCD是直角梯形,且ADBCADCD,∠ABC60°BC2AD2PC3PAB是正三角形.

1)求证:ABPC

2)求二面角PCDB的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】物价监督部门为调研某公司新开发上市的一种产品销售价格的合理性,对某公司的该产品的销量与价格进行了统计分析,得到如下数据和散点图:

定价x(元/kg)

10

20

30

40

50

60

年销量y(kg)

1150

643

424

262

165

86

z=21ny

14.1

12.9

12.1

11.1

10.2

8.9

(参考数据:

(Ⅰ)根据散点图判断,y与x和z与x哪一对具有的线性相关性较强(给出判断即可,不必说明理由)?

(Ⅱ)根据(Ⅰ)的判断结果及数据,建立y关于x的回归方程(方程中的系数均保留两位有效数字).

附:对于一组数据(x1,y1),(x2,y2),(x3,y3),…,(xn,yn),其回归直线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的中心在原点,焦点在坐标轴上,离心率为,且过点.

1)求双曲线的方程;

2)若点在双曲线上,求 的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设圆的圆心在轴的正半轴上,与轴相交于点,且直线被圆截得的弦长为.

1)求圆的标准方程;

2)设直线与圆交于两点,那么以为直径的圆能否经过原点,若能,请求出直线的方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC中,B-10),C10),AB=6,点PAB上,且∠BAC=PCA

(1)求点P的轨迹E的方程;

(2)若,过点C的直线与E交于MN两点,与直线x=9交于点K,记QM,QN,QK的斜率分别为k1,k2,k3,试探究k1,k2,k3的关系,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P到直线y=﹣4的距离比点P到点A01)的距离多3

(1)求点P的轨迹方程;

(2)经过点Q02)的动直线l与点P的轨交于MN两点,是否存在定点R使得∠MRQ=∠NRQ?若存在,求出点R的坐标:若不存在,请说明理由.

查看答案和解析>>

同步练习册答案