精英家教网 > 高中数学 > 题目详情
设函数f(x)的定义域为R,对任意x1,x2f(x1)+f(x2)=2f(
x1+x2
2
)•f(
x1-x2
2
)
,且f(
π
2
)=0
,f(π)=-1.
(1)求f(0)的值;
(2)求证:f(x)是偶函数,且f(π-x)+f(x)=0;
(3)若-
π
2
<x<
π
2
时,f(x)>0,求证:f(x)在(0,π)上单调递减.
分析:(1)根据题设通过合理赋值就可以求出f(0)的值;
(2)用赋值法可以得到f(x)与f(-x)的关系,以及f(
π
2
)=0
,再进一步令x1=x,x2=π-x即可得f(π-x)+f(x)=0;
(3)用单调性的定义证明,要注意变量的范围.
解答:解:(1)令x1=x2=π,可得2f(π)=2f(π)f(0),
∵f(π)=-1,
∴得f(0)=1.
(2)令x1=x,x2=-x,可得f(x)+f(-x)=2f(x)•f(0)
∵f(0)=1∴f(x)=f(-x)
∴f(x)是偶函数;
令x1=π,x2=0,可得f(π)+f(0)=2f(
π
2
)f(
π
2
)

又∵f(0)=1,f(π)=-1∴f(0)+f(π)=0
∴得f(
π
2
)=0

x1=x, x2=π-x,可得f(x)+f(π-x)=2f(
π
2
)f(
2x-π
2
)=0

∴f(π-x)+f(x)=0.
(3)任取x1,x2∈(0,π),且x1<x2
f(x1)-f(x2)=f(x1)+f(π-x2)=2f(
x1-x2
2
)•f(
x1+x2
2
)

∵x1,x2∈(0,π)∴0<
x1-x2
2
π
2
-
π
2
x1+x2
2
π
2

由题意知-
π
2
<x<
π
2
时,f(x)>0,
f(
x1-x2
2
)>0
f(
x 1x2
2
)>0

故f(x1)-f(x2)>0
∴f(x)在(0,π)上单调递减.
点评:本题是以余弦函数为背景的抽象函数问题,考查了函数的奇偶性、对称性、单调性,同时也考查了学生解决探索性问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x-cosx,则a=f(-
3
2
)与b=f(
15
2
)的大小关系为
a>b
a>b

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)的定义域为D,若对于任意x1,x2∈D,当x1<x2时,都有f(x1)≤f(x2),则称函数f(x)在D上为非减函数.设函数f(x)为定义在[0,1]上的非减函数,且满足以下三个条件:①f(0)=0;②f(1-x)+f(x)=1,x∈[0,1]; ③当x∈[0,
1
4
]
时,f(x)≥2x恒成立.则f(
3
7
)+f(
5
9
)
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x-cosx,则a=f(-数学公式)与b=f(数学公式)的大小关系为________.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年安徽省蚌埠二中高三(上)12月月考数学试卷(文科)(解析版) 题型:填空题

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x-cosx,则a=f(-)与b=f()的大小关系为   

查看答案和解析>>

科目:高中数学 来源:山东省月考题 题型:填空题

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x﹣cosx,则a=f(﹣)与b=f()的大小关系为(    ).

查看答案和解析>>

同步练习册答案