【题目】在三棱锥S﹣ABC中,AB⊥BC,AB=BC= ,SA=SC=2,二面角S﹣AC﹣B的余弦值是 ,若S、A、B、C都在同一球面上,则该球的表面积是 .
【答案】6π
【解析】解:如图所示:
取AC中点D,连接SD,BD,则由AB=BC,SA=SC得出SD⊥AC,BD⊥AC,
∴∠SDB为S﹣AC﹣B的平面角,且AC⊥面SBD.
由题意:AB⊥BC,AB=BC= ,易得:△ABC为等腰直角三角形,且AC=2,
又∵BD⊥AC,故BD=AD= AC,
在△SBD中,BD= = =1,
在△SAC中,SD2=SA2﹣AD2=22﹣12=3,
在△SBD中,由余弦定理得SB2=SD2+BD2﹣2SDBDcos∠SDB=3+1﹣2× =2,
满足SB2=SD2﹣BD2 , ∴∠SBD=90°,SB⊥BD,
又SB⊥AC,BD∩AC=D,∴SB⊥面ABC.
以SB,BA,BC为顶点可以补成一个棱长为 的正方体,S、A、B、C都在正方体的外接球上,
正方体的对角线为球的一条直径,所以2R= ,R= ,球的表面积S=4 =6π.
所以答案是:6π.
【考点精析】本题主要考查了球内接多面体的相关知识点,需要掌握球的内接正方体的对角线等于球直径;长方体的外接球的直径是长方体的体对角线长才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】在一次模拟考试后,从高三某班随机抽取了20位学生的数学成绩,其分布如下:
分组 | [90,100] | [100,110) | [110,120) | [120,130) | [130,140) | [140,150) |
频数 | 1 | 2 | 6 | 7 | 3 | 1 |
分数在130分(包括130分)以上者为优秀,据此估计该班的优秀率约为( )
A.10%
B.20%
C.30%
D.40%
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】 【2017四川宜宾二诊】选修4-4:坐标系与参数方程
在直角坐标系中,已知点,曲线的参数方程为.以原点为极点, 轴正半轴为极轴建立极坐标系,直线的极坐标方程为.
(Ⅰ)判断点与直线的位置关系并说明理由;
(Ⅱ)设直线与曲线的两个交点分别为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正数数列{an}的前n项和为Sn , 点P(an , Sn)在函数f(x)= x2+ x上,已知b1=1,3bn﹣2bn﹣1=0(n≥2,n∈N*),
(1)求数列{an}的通项公式;
(2)若cn=anbn , 求数列{cn}的前n项和Tn;
(3)是否存在整数m,M,使得m<Tn<M对任意正整数n恒成立,且M﹣m=9,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: (a>b>0),四点P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三点在椭圆C上.
(1)求C的方程;
(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知长方体AC1中,AD=AB=2,AA1=1,E为D1C1的中点,如图所示.
(Ⅰ)在所给图中画出平面ABD1与平面B1EC的交线(不必说明理由);
(Ⅱ)证明:BD1∥平面B1EC;
(Ⅲ)求平面ABD1与平面B1EC所成锐二面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱ABC﹣A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC= AA1 , D是棱AA1的中点.
(Ⅰ)证明:平面BDC1⊥平面BDC
(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解高三年级学生寒假期间的学习情况,某学校抽取了甲、乙两班作为对象,调查这两个班的学生在寒假期间平均每天学习的时间(单位:小时),统计结果绘成频率分布直方图(如图).已知甲、乙两班学生人数相同,甲班学生平均每天学习时间在区间的有8人.
(I)求直方图中的值及甲班学生平均每天学习时间在区间的人数;
(II)从甲、乙两个班平均每天学习时间大于10个小时的学生中任取4人参加测试,设4人中甲班学生的人数为,求的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com