精英家教网 > 高中数学 > 题目详情
(2012•江苏一模)已知a,b∈{1,2,3,4,5,6},直线l1:x-2y-1=0,l2:ax+by-1=0,则直线l1⊥l2的概率为
1
12
1
12
分析:本题是一个等可能事件的概率,试验发生包含的事件数是36,满足条件的事件是直线l1⊥l2,得到关于a,b的关系式,写出满足条件的事件数,即可得到结果.
解答:解:设事件A为“直线l1⊥l2”,
∵a,b∈{1,2,3,4,5,6}的总事件数为(1,1),(1,2)…,(1,6),
(2,1),(2,2),…,(2,6),…,(5,6),…,(6,6)共36种,
而l1:x-2y-1=0,l2:ax+by-1=0,l1⊥l2?1•a-2b=0,
∴a=2时,b=1;
a=4时,b=2;
a=6时,b=3;
共3种情形.
∴P(A)=
3
36
=
1
12

∴直线l1⊥l2的概率为:
1
12

故答案为:
1
12
点评:本题考查等可能事件的概率,考查两条直线的垂直,关键在于掌握等可能事件的概率公式,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•江苏一模)已知椭圆的方程为
x2
a2
+
y2
b2
=1(a>b>0)
,过椭圆的右焦点且与x轴垂直的直线与椭圆交于P、Q两点,椭圆的右准线与x轴交于点M,若△PQM为正三角形,则椭圆的离心率等于
3
3
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏一模)观察下列等式:
13=1,
13+23=9,
13+23+33=36,
13+23+33+43=100

猜想:13+23+33+43+…+n3=
[
n(n+1)
2
]2
[
n(n+1)
2
]2
(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏一模)设数列{an}的前n项和为Sn,已知Sn+1=pSn+q(p,q为常数,n∈N*),如果:a1=2,a2=1,a3=q-3p.
(1)求p,q的值;
(2)求数列{an}的通项公式;
(3)是否存在正整数m,n,使
Sn-m
Sn+1-m
2m
2m+1
成立?若存在,求出所有符合条件的有序实数对(m,n);若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏一模)选修4-1:几何证明选讲
如图,∠PAQ是直角,圆O与AP相切于点T,与AQ相交于两点B,C.
求证:BT平分∠OBA.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏一模)选修4-2:矩阵与变换
在极坐标系中,A为曲线ρ2+2ρcosθ-3=0上的动点,B为直线ρcosθ+ρsinθ-7=0上的动点,求AB的最小值.

查看答案和解析>>

同步练习册答案