精英家教网 > 高中数学 > 题目详情
如图,在△ABC中,点O是BC的中点,过点O的直线分别交直线AB,AC于不同的两点M,N,若
AB
=m
AM
AC
=n
AN
,求m+n的值.
分析:根据题意和几何图形作出辅助线:延长AO至A'使AO=A'O,延长A'C交MN 于M',利用O是BC的中点,得到三角形全等和相似,利用相似比和线段的关系列出等式,再把条件代入求出m+n的值.
解答:解:延长AO至A'使AO=A'O,延长A'C交MN 于M',如图:
则△OBM≌△OCM',∴BM=CM',
∵△NAM∽△NCM',
NC
AN
=
CM′
AM
,即
AN-AC
AN
=
AB-AM
AM

AB
=m
AM
AC
=n
AN

|
AB|
=m
|AM|
,|
AC|
=n
|AN|

代入上式得,n-1=1-m,则m+n=2.
点评:本题考查了向量在几何中的应用,利用条件和图形作出辅助线,由三角形全等和相似得到相似比,再由向量的模和线段的之间关系代入求出值,考查了数形结合思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在△ABC中,已知∠ABC=90°,AB上一点E,以BE为直径的⊙O恰与AC相切于点D,若AE=2cm,
AD=4cm.
(1)求:⊙O的直径BE的长;
(2)计算:△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在△ABC中,D是边AC上的点,且AB=AD,2AB=
3
BD,BC=2BD,则sinC的值为(  )
A、
3
3
B、
3
6
C、
6
3
D、
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,设
AB
=a
AC
=b
,AP的中点为Q,BQ的中点为R,CR的中点恰为P.
(Ⅰ)若
AP
=λa+μb
,求λ和μ的值;
(Ⅱ)以AB,AC为邻边,AP为对角线,作平行四边形ANPM,求平行四边形ANPM和三角形ABC的面积之比
S平行四边形ANPM
S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,∠B=45°,D是BC边上的一点,AD=5,AC=7,DC=3.
(1)求∠ADC的大小;
(2)求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,已知
BD
=2
DC
,则
AD
=(  )

查看答案和解析>>

同步练习册答案