精英家教网 > 高中数学 > 题目详情

【题目】焦点在x轴上的椭圆C经过点,椭圆C的离心率为是椭圆的左、右焦点,P为椭圆上任意点.

1)求椭圆的标准方程;

2)若点M的中点(O为坐标原点),过M且平行于OP的直线l交椭圆CAB两点,是否存在实数,使得;若存在,请求出的值,若不存在,请说明理由.

【答案】(1)(2)存在满足条件,详见解析

【解析】

1)根据所给条件列出方程组,求解即可。

2)对直线的斜率存在与否分类讨论,当斜率存在时,设直线的方程为,联立直线与椭圆方程,利用韦达定理,即可表示出,则可求。

解:(1)由已知可得,解得

所以椭圆的标准方程为

2)若直线的斜率不存在时,

所以

当斜率存在时,设直线的方程为

联立直线与椭圆方程,消去y,得

所以

因为,设直线的方程为

联立直线与椭圆方程,消去,得,解得

同理

因为

,故,存在满足条件,

综上可得,存在满足条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点A(-1,0),B(1,0),C(0,1),直线y=ax+b(a>0)ABC分割为面积相等的两部分,b的取值范围是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.

1)将红色卡片和蓝色卡片分别放在两个袋中,然后从两个袋中各取一张卡片,求两张卡片数字之积为偶数的概率

2)将五张卡片放在一个袋子中,从中任取两张,求两张卡片颜色不同的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定数列,若满足),对于任意,都有,则称数列为指数数列.

1)已知数列的通项公式分别为,试判断是不是指数数列(需说明理由);

2)若数列满足:,证明:是指数数列;

3)若是指数数列,,证明:数列中任意三项都不能构成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直棱柱

I)证明:

II)求直线所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的右顶点到其一条渐近线的距离等于,抛物线的焦点与双曲线的右焦点重合,则抛物线上的动点到直线距离之和的最小值为( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=﹣x+|2x+1|,不等式f(x)<2的解集是M.

(Ⅰ)求集合M;

(Ⅱ)设a,b∈M,证明:|ab|+1>|a|+|b|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂用甲、乙两种不同工艺生产一大批同一种零件,零件尺寸均在[21.7,22.3](单位:cm)之间的零件,把零件尺寸在[21.9,22.1)的记为一等品,尺寸在[21.8,21.9)[22.1,22.2)的记为二等品,尺寸在[21.7,21.8)[22.2,22.3]的记为三等品,现从甲、乙工艺生产的零件中各随机抽取100件产品,所得零件尺寸的频率分布直方图如图所示:

(Ⅰ)根据上述数据完成下列2×2列联表,根据此数据你认为选择不同的工艺与一等品产出率是否有关?

甲工艺

乙工艺

总计

一等品

非一等品

总计

P(K2≥k)

0.1

0.05

0.01

k

2.706

3.841

6.635

附:,其中

(Ⅱ)以上述两种工艺中各种产品的频率作为相应产品产出的概率,若一等品、二等品、三等品的单件利润分别为30元、20元、15元,从一件产品的平均利润考虑,你认为以后该工厂应该选择哪种工艺生产该种零件?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面上的三点 .

(1)求以 为焦点且过点 的椭圆的标准方程

(2)设点 关于直线 的对称点分别为 求以 为焦点且过点 的双曲线的标准方程.

查看答案和解析>>

同步练习册答案