精英家教网 > 高中数学 > 题目详情
已知p:?x∈R,mx2+1≤0,q:?x∈R,x2+mx+1>0,若pVq为假命题,则实数m的取值范围为(  )
分析:由题意,可先解出两命题都是真命题时的参数m的取值范围,再由pVq为假命题,得出两命题都是假命题,求出两命题都是假命题的参数m的取值范围,它们的公共部分就是所求
解答:解:由p:?x∈R,mx2+1≤0,可得m<0,
由q:?x∈R,x2+mx+1>0,可得△=m2-4<0,解得-2<m<2
因为pVq为假命题,所以p与q都是假命题
若p是假命题,则有m≥0;若q是假命题,则有m≤-2或m≥2
故符合条件的实数m的取值范围为m≥2
故选A
点评:本题考查复合命题的真假判断,解题的关键是准确理解复合命题的真假判断规则,
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知p:?x∈R,sinx+cosx>m,q:?x∈R,x2+m+1<0.若p∨q为真,p∧q为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:?x∈R,m<x2+
1x2
恒成立;q:方程4x2+4(m-2)x+1=0无实根,若p∨q为真命题,p∧q为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:?x∈R,cosx>m;q:?x∈R,x2+mx+1<0.若p∨q为真,p∧q为假,则实数m的取值范围是
-2≤m<-1,或m>2
-2≤m<-1,或m>2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知p:?x∈R,m<x2+
1
x2
恒成立;q:方程4x2+4(m-2)x+1=0无实根,若p∨q为真命题,p∧q为假命题,求实数m的取值范围.

查看答案和解析>>

同步练习册答案