精英家教网 > 高中数学 > 题目详情

【题目】如图,椭圆的中心为原点O,长轴在x轴上,离心率 ,过左焦点F1作x轴的垂线交椭圆于A、A′两点,|AA′|=4.

(1)求该椭圆的标准方程;
(2)取垂直于x轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.若PQ⊥P'Q,求圆Q的标准方程.

【答案】
(1)解:由题意知点A(﹣c,2)在椭圆上,则 ,即

∵离心率 ,∴

联立①②得: ,所以b2=8.

把b2=8代入②得,a2=16.

∴椭圆的标准方程为


(2)解:设Q(t,0),圆Q的半径为r,则圆Q的方程为(x﹣t)2+y2=r2

不妨取P为第一象限的点,因为PQ⊥P'Q,则P( )(t>0).

联立 ,得x2﹣4tx+2t2+16﹣2r2=0.

由△=(﹣4t)2﹣4(2t2+16﹣2r2)=0,得t2+r2=8

又P( )在椭圆上,所以

整理得,

代入t2+r2=8,得

解得: .所以

此时

满足椭圆上的其余点均在圆Q外.

由对称性可知,当t<0时,t=﹣

故所求圆Q的标准方程为


【解析】(1)利用点A(﹣c,2)在椭圆上,结合椭圆的离心率,求出几何量,即可求得椭圆的标准方程;(2)设出圆Q的圆心坐标及半径,由PQ⊥P'Q得到P的坐标,写出圆的方程后和椭圆联立,化为关于x的二次方程后由判别式等于0得到关于t与r的方程,把P点坐标代入椭圆方程得到关于t与r的另一方程,联立可求出t与r的值,经验证满足椭圆上的其余点均在圆Q外,结合对称性即可求得圆Q的标准方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】解关于的不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数),以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程

(Ⅰ)求曲线的普通方程和曲线的直角坐标方程;

(Ⅱ)设为曲线上的动点,求点到曲线上的距离的最小值的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正方形和矩形所在的平面互相垂直,是线段的中点.

(1)求证:平面

(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:

奖级

摸出红、蓝球个数

获奖金额

一等奖

3红1蓝

200元

二等奖

3红0蓝

50元

三等奖

2红1蓝

10元

其余情况无奖且每次摸奖最多只能获得一个奖级.
(1)求一次摸奖恰好摸到1个红球的概率;
(2)求摸奖者在一次摸奖中获奖金额x的分布列与期望E(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在三棱柱中, 为正方形,是菱形,平面平面

(1)求证:平面

(2)求证:

(3)设点E,F,H,G分别是的中点,试判断四点是否共面,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC,P0是边AB上一定点,满足 ,且对于边AB上任一点P,恒有 则(
A.∠ABC=90°
B.∠BAC=90°
C.AB=AC
D.AC=BC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,平面平面,四边形为正方形,四边形为梯形,且.

(1)求证:

(2)若为线段的中点,求证:平面

(3)求多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数fx)=x2+bx+c有两个零点1和﹣1

1)求fx)的解析式;

2)设gx,试判断函数gx)在区间(﹣11)上的单调性并用定义证明;

3)由(2)函数gx)在区间(﹣11)上,若实数t满足gt1)﹣g(﹣t)>0,求t的取值范围.

查看答案和解析>>

同步练习册答案