精英家教网 > 高中数学 > 题目详情
(2013•铁岭模拟)已知函数f(x)=cos2x+sinx,那么下列命题中假命题是(  )
分析:由f(x)=cos2x+sinx,知f(-x)=cos2x-sinx,故f(x)既不是奇函数也不是偶函数;由f(x)=cos2x+sinx=1-sin2x+sinx=0,得sinx=
5
-1
2
,故f(x)在[-π,0]上恰有2个零点;由f(x)=cos2x+sinx=1-sin2x+sinx=-(sinx-
1
2
2+
3
4
,故f(x)是周期函数,且f(x)在(
π
2
6
)
上是增函数.
解答:解:∵f(x)=cos2x+sinx,
∴f(-x)=cos2x-sinx,
故f(x)既不是奇函数也不是偶函数,即A是真命题;
∵由f(x)=cos2x+sinx=1-sin2x+sinx=0,
得sinx=
5
-1
2

∴f(x)在[-π,0]上恰有2个零点,即B是假命题;
∵f(x)=cos2x+sinx=1-sin2x+sinx=-(sinx-
1
2
2+
3
4

∴f(x)是周期函数,即C是真命题;
∵f(x)=cos2x+sinx=1-sin2x+sinx=-(sinx-
1
2
2+
3
4

∴f(x)在(
π
2
6
)
上是增函数,即D是真命题.
故选B.
点评:本题考查命题的真假判断,是基础题.解题时要注意三角函数性质的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•铁岭模拟)如图,是一程序框图,则输出结果为
5
11
5
11

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•铁岭模拟)已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=
2|x-1|-1,0<x≤2
1
2
f(x-2),x>2
,则函数g(x)=xf(x)-1在[-6,+∞)上的所有零点之和为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•铁岭模拟)已知函数f(x)=x2+(a+1)x+lg|a+2|(a∈R,且a≠-2)
(I)若f(x)能表示成一个奇函数g(x)和一个偶函数h(x)的和,求g(x)和h(x)的解析式;
(II)命题P:函数f(x)在区间[(a+1)2,+∞)上是增函数;命题Q:函数g(x)是减函数.如果命题P、Q有且仅有一个是真命题,求a的取值范围;
(III)在(II)的条件下,比较f(2)与3-lg2的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•铁岭模拟)已知锐角α的终边上一点P(sin40°,1+cos40°)则锐角α=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•铁岭模拟)已知四边形ABCD满足AD∥BC,BA=AD=DC=
12
BC=a
,E是BC的中点,将△BAE沿着AE翻折成△B1AE,使面B1AE⊥面AECD,F为B1D的中点.
(Ⅰ)求四棱B1-AECD的体积;
(Ⅱ)证明:B1E∥面ACF;
(Ⅲ)求面ADB1与面ECB1所成二面角的余弦值.

查看答案和解析>>

同步练习册答案