精英家教网 > 高中数学 > 题目详情
下列关于两条不同的直线l,m两个不重合的平面α,β的说法,正确的是(  )
A、若l?α且α⊥β,则l⊥β
B、若l⊥β且m⊥β,则l∥m
C、若l⊥β且α⊥β,则l∥α
D、若α∩β=m且l⊥m,则l⊥α
考点:命题的真假判断与应用,空间中直线与直线之间的位置关系,空间中直线与平面之间的位置关系,直线与平面垂直的判定
专题:
分析:在分析题目时可结合着图象判断,解题时应就线面关系平行,相交及在其内考查的更全面.
解答: 解:由线面垂直的判定定理,即“垂直于同一个平面的两条直线平行可知”,选择B.
在选项A中,由条件可得,l∥β或l?β或l与β相交;
在选项C中,由条件可得,l∥α或l?α;
在选项D中,由条件可得,l∥α或l?α或l与α相交.
故答案选B.
点评:在本题的处理中,可以针对于单项选择题的特性,用确定的方法,根据定理直接锁定B选项.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

复数z=
1-i
2+i
在复平面上对应的点的坐标为(  )
A、(1,-3)
B、(
1
5
,-
3
5
C、(3,-3)
D、(
3
5
,-
3
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
1
2
(ax+a-x)(a>0且a≠1)的图象过点(2,
41
9
).判断f(x)在(0,+∞)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|mx-1=0},B={x∈Z|2x2+x≤0},若A∩B=A,则满足条件的实数m的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
1-x
定义域为M,g(x)=ex值域为N,则M∩N=(  )
A、[0,1]
B、(0,1]
C、(0,+∞)
D、[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(1-2x)2014=a0+a1x+a2x2+…+a2014x2014(x∈R),则
a1
2
+
a2
22
+
a3
23
+…+
a2014
22014
的值为(  )
A、-1B、0C、2D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<
π
2
)的部分图象如图所示,则y=f(x+
π
6
)取得最小值时x的集合为(  )
A、{x|x=kπ-
π
6
,k∈Z }
B、{x|x=kπ-
π
3
,k∈Z }
C、{x|x=2kπ-
π
6
,k∈Z }
D、{x|x=2kπ-
π
3
,k∈Z }

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线x2-y2=1的焦点与椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的焦点重合,且该椭圆的长轴长为4,M、N是椭圆上的动点.
(1)求椭圆标准方程;
(2)设动点P满足:
OP
=
OM
+2
ON
,直线OM与ON的斜率之积为-
1
2
,求证:存在定点F1,F2,使得|PF1|+|PF2|为定值,并求出F1,F2的坐标;
(3)若M在第一象限,且点M,N关于原点对称,点M在x轴的射影为A,连接NA并延长交椭圆于点B,求证:以NB为直径的圆经过点M.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆Γ:
x2
4
+y2=1

(1)椭圆Γ的短轴端点分别为A,B(如图),直线AM,BM分别与椭圆Γ交于E,F两点,其中点M(m,
1
2
)满足m≠0,且m≠±
3

①证明直线EF与y轴交点的位置与m无关;
②若△BME面积是△AMF面积的5倍,求m的值;
(2)若圆φ:x2+y2=4.l1,l2是过点P(0,-1)的两条互相垂直的直线,其中l1交圆φ于T、
R两点,l2交椭圆Γ于另一点Q.求△TRQ面积取最大值时直线l1的方程.

查看答案和解析>>

同步练习册答案