精英家教网 > 高中数学 > 题目详情
已知实数a满足0<a<2,直线l1:ax-2y-2a+4=0和l2:2x+a2y-2a2-4=0与两坐标轴围成一个四边形.
(1)求证:无论实数a如何变化,直线l1、l2必过定点.
(2)画出直线l1和l2在平面坐标系上的大致位置.
(3)求实数a取何值时,所围成的四边形面积最小?
分析:(1)把所给的两个直线的方程进行整理,把含有字母a的部分都分开,提出a,得到一个直线的方程,把两个方程联立得到结果.
(2)根据所给的条件画出直线的大致位置,如图.
(3)求出直线与坐标轴的交点,把一个四边形转化成两个三角形,根据底边和高得到三角形的面积,表示出面积,根据二次函数的性质得到结果.
解答:精英家教网精英家教网证明:(1)由l1:ax-2y-2a+4=0变形得
a(x-2)-2y+4=0
所以,当x=2时,y=2
即直l1过定点(2,2)
由l2:2x+a2y-2a2-4=0变形得a2(y-2)+2x-4=0
所以当y=2时,x=2
即直线l2过定点(2,2)
(2)如图:
(3)直线l1与y轴交点为A(0,2-a),直线l2与x轴交点为B(a2+2,0),如图
由直线l1:ax-2y-2a+4=0知,直线l1也过定点C(2,2)
过C点作x轴垂线,垂足为D,于是
S四边形AOBC=S梯形AODC+S△BCD
=
1
2
(2-a+2)•2+
1
2
a2•2

=a2-a+4
∴当a=
1
2
时,S四过形AOBC最小.
故当a=
1
2
时,所围成的四边形面积最小.
点评:本题考查过顶点的直线和四边形的面积的最值,本题解题的关键是表示出面积,在立体几何和解析几何中,不论求什么图形的面积一般都要表示出结果,再用函数的最值来求.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

9、已知实数a满足1<a<2,命题p:函数y=loga(2-ax)在[0,1]上是减函数,命题q:“|x|<1”是“x<a”的充分不必要条件,则下面说法正确的是

①p或q为真命题;②p且q为假命题;③非p且q为真命题;④非p或非q为真命题、

查看答案和解析>>

科目:高中数学 来源: 题型:

9、已知实数a、b满足3a=10b,下列5个关系式:①0<a<b;②0<b<a;③a<b<0;④b<a<0;⑤a=b.其中不可能成立的关系有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a、b满足3a=10b,下列5个关系式:①0<a<b;②0<b<a;③a<b<0;④b<a<0;⑤a=b=0,其中可能成立的关系有
②③⑤
②③⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a满足0<a≤2,a≠1,设函数f (x)=
1
3
x3-
a+1
2
x2+ax.
(1)当a=2时,求f (x)的极小值;
(2)若函数g(x)=x3+bx2-(2b+4)x+ln x (b∈R)的极小值点与f (x)的极小值点相同.
求证:g(x)的极大值小于等于
5
4

查看答案和解析>>

同步练习册答案