精英家教网 > 高中数学 > 题目详情
a是实常数,函数f(x)对于任何的非零实数x都有,则不等式f(x)-x≥0的解集为( )
A.
B.
C.
D.
【答案】分析:根据f(1)=1,代入已知的等式中求出a的值,再把a的值代入等式得到一个关系式,记作①,把x换为得到令一个关系式,记作②,把①代入②即可得到f(x)的解析式,把求出的f(x)代入不等式中,分x大于0和x小于0两种情况考虑,当x大于0时去分母时不等号方向不变,当x小于0时去分母不等号方向改变,分别求出相应的解集,求出两解集的并集即为原不等式的解集.
解答:解:因为f(1)=1,所以f(1)=af(1)-2,即a-2=1,解得a=3,
所以f()=3f(x)-x-1①,
=t,得到f(t)=3f()--1,即f(x)=3f()--1②,
将①代入②得:f(x)=3[3f(x)-x-1]--1,
化简得:f(x)=++
代入不等式得:++-x≥0,
当x>0时,去分母得:5x2-4x-1≤0,即(5x+1)(x-1)≤0,
解得:-≤x≤1,所以原不等式的解集为(0,1];
当x<0时,去分母得:5x2-4x-1≥0,即(5x+1)(x-1)≥0,
解得:x≥1或x≤-,所以原不等式的解集为(-∞,-],
综上,原不等式的解集为(-∞,-]∪(0,1].
故选A
点评:此题考查了其他不等式的解法,考查了分类讨论的数学思想,是一道中档题.确定出f(x)的解析式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

a是实常数,函数f(x)对于任何的非零实数x都有f(
1
x
)=af(x)-x-1,且f(1)=1
,则不等式f(x)-x≥0的解集为(  )
A、(-∞,-
1
5
]∪(0,1]
B、(-∞,-
1
5
]∪[1,+∞)
C、[-
1
5
,0∪(0,1]
D、[-
1
5
,0)∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

若a是实常数,函数f(x)对于任何的非零实数x都有f(
1
x
)=af(x)-x-1
,且f(1)=1,则函数F(x)=f(x)(x∈D={x|x∈R,x>0,f(x)≥x})的取值范围是
[
1
2
+
3
4
,+∞)
[
1
2
+
3
4
,+∞)

查看答案和解析>>

科目:高中数学 来源:2010-2011学年四川省成都市树德中学高三(下)入学数学试卷(文科)(解析版) 题型:选择题

a是实常数,函数f(x)对于任何的非零实数x都有,则不等式f(x)-x≥0的解集为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2010年江西省吉安市高考数学二模试卷(理科)(解析版) 题型:选择题

a是实常数,函数f(x)对于任何的非零实数x都有,则不等式f(x)-x≥0的解集为( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案