精英家教网 > 高中数学 > 题目详情
在△ABC中,a,b,c分别为角A,B,C所对的边,向量
m
=(b+a,-c),
n
=(b+c,b-a).且
m
n

(I)求cos2(
π
4
+A)-sin2(
π
4
+A)
的值;
(II)若b=4,△ABC的面积为
3
,求△ABC
的周长.
分析:(I)通过向量的平行,得到余弦定理的关系式,求出cosA,sinA的值,利用二倍角公式化简cos2(
π
4
+A)-sin2(
π
4
+A)
,代入cosA,sinA的值得到结果;
(II)利用b=4,△ABC的面积为
3
,求出c的值,利用余弦定理求出a 的值,然后求△ABC
的周长.
解答:解:(I)由已知
m
=(b+a,-c),
n
=(b+c,b-a)
m
n

可得(b+a)(b-a)=-c(b+c)
即b2-a2=-bc-c2
所以在△ABC中,cosA=
b2+c2-a2
2bc
=-
1
2

所以sinA=
3
2

cos2(
π
4
+A)-sin2(
π
4
+A)

=cos2(
π
4
+A
)=-sin2A=-2sinAcosA
=-2×
3
2
×(-
1
2
)
=
3
2

(II)因为S△ABC=
1
2
bcsinA

3
=
1
2
×4c×
3
2
得c=1
于是a2=b2+c2-2bccosA=42+12-2×4×1×(-
1
2
)
=21
a=
21

所以△ABC的周长a+b+c=5+
21
点评:本题是基础题,考查三角函数的化简求值,向量平行的应用,余弦定理的应用,考查计算能力,常考题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,∠A、∠B、∠C所对的边长分别是a、b、c.满足2acosC+ccosA=b.则sinA+sinB的最大值是(  )
A、
2
2
B、1
C、
2
D、
1+
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a<b<c,B=60°,面积为10
3
cm2,周长为20cm,求此三角形的各边长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为角A,B,C的对边,已知
.
m
=(cos
C
2
,sin
C
2
)
.
n
=(cos
C
2
,-sin
C
2
)
,且
m
n
=
1
2

(1)求角C;
(2)若a+b=
11
2
,△ABC的面积S=
3
3
2
,求边c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A,B,C为三个内角,若cotA•cotB>1,则△ABC是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)函数的图象是由y=sinx的图象经过如下三步变换得到的:
①将y=sinx的图象整体向左平移
π
6
个单位;
②将①中的图象的纵坐标不变,横坐标缩短为原来的
1
2

③将②中的图象的横坐标不变,纵坐标伸长为原来的2倍.
(1)求f(x)的周期和对称轴;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,且f(C)=2,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

同步练习册答案