精英家教网 > 高中数学 > 题目详情
14.在极坐标系中,圆C的方程为ρ=4$\sqrt{2}$cos(θ-$\frac{π}{4}$),以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为$\left\{\begin{array}{l}{x=t+1}\\{y=t-1}\end{array}\right.$(t为参数),
(1)求圆C的直角坐标方程与直线l的普通方程;
(2)设直线l与圆C相交于A,B两点,求三角形△ABC的面积.

分析 (1)利用三种方程的互化方法,求圆C的直角坐标方程与直线l的普通方程;
(2)设直线l与圆C相交于A,B两点,求出圆心到直线的距离,可得|AB|,即可求三角形△ABC的面积.

解答 解:(1)圆C的方程为ρ=4$\sqrt{2}$cos(θ-$\frac{π}{4}$),即圆C的方程为ρ=4cosθ-4sinθ,直角坐标方程为x2+y2=4x-4y;
直线l的参数方程为$\left\{\begin{array}{l}{x=t+1}\\{y=t-1}\end{array}\right.$(t为参数),普通方程x-y=2;
(2)圆心到直线的距离d=$\frac{|2+2-2|}{\sqrt{2}}$=$\sqrt{2}$,∴|AB|=2$\sqrt{8-2}$=2$\sqrt{6}$,
∴三角形△ABC的面积S=$\frac{1}{2}×2\sqrt{6}×\sqrt{2}$=2$\sqrt{3}$.

点评 本题考查三种方程的互化,直线与圆的位置关系,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.若y=f(x)的图象上每一点的横坐标伸长为原来的2倍(纵坐标不变),然后把图象向左平移$\frac{π}{2}$个单位,再把图象上所有点的纵坐标缩短到原来的$\frac{1}{2}$倍(横坐标不变),这样得到的图象与y=sinx的图象相同,则f(x)等于(  )
A.$\frac{1}{2}$sin($\frac{x}{2}$-$\frac{π}{2}$)B.2sin($\frac{x}{2}$-$\frac{π}{2}$)C.$\frac{1}{2}$sin(2x-$\frac{π}{2}$)D.2sin(2x-$\frac{π}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)求证:已知x,y都是正实数,求证:x3+y3≥x2y+xy2
(2)求证:已知x,y,z都是正数,求证:$\frac{x}{yz}+\frac{y}{zx}+\frac{z}{xy}≥\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$•.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.复数$z=\frac{3+7i}{i}$的实部与虚部分别为(  )
A.7,-3B.7,-3iC.-7,3D.-7,3i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数f(x)对任意x,y∈R满足f(x+y)+f(x-y)=2f(x)f(y),则下列关于函数奇偶性的说法一定正确的是(  )
A.是偶函数但不是奇函数B.是奇函数但不是偶函数
C.是非奇非偶函数D.可能是奇函数也可能是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若sinα=$\frac{\sqrt{3}}{2}$,则cos2α=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{\sqrt{3}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.(1+x-$\frac{2}{x}$)6的展开式中的常数项是141.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在锐角△ABC中,内角A、B、C的对边分别为a,b,c且$bcosC=\sqrt{2}acosB-ccosB$,
(1)求角B大小
(2)设A=θ,求函数$f(θ)=2{sin^2}(\frac{π}{4}+θ)-\sqrt{3}cos2θ-2$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知不等式x2+ax+1>0,
(1)解此关于x的不等式;
(2)若此不等式对任意x>0恒成立,试求实数a的取值集合;
(3)若此不等式对任意a<1恒成立,试求实数x的取值集合.

查看答案和解析>>

同步练习册答案