精英家教网 > 高中数学 > 题目详情
(2013•自贡一模)一个几何体的三视图如图所示,则该几何体的体积等于
8+
4
3
π
8+
4
3
π
分析:由三视图知,原几何体是一个球和一个正方体构成的组合体,再根据三视图得到球的半径和正方体的棱长,即可求体积
解答:解:由三视图知原几何体是一个球和一个正方体构成的组合体,球的直径为2,半径为1,正方体的棱长为2
∴原几何体的体积为:V=
4
3
×π×13+2×2×2=
3
+8

故答案为:
3
+8
点评:本题考查三视图,要求能把三视图还原成原几何体,能根据三视图找到原几何体的长度关系,要求有较好的空间想象力.属简单题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•自贡一模)已知函数f(x)=  
x+1
,  x
≤0,
log2x
,x>0
则函数y=f[f(x)]+1的零点个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•自贡一模)运行如图所示的程序框图,则输出s的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•自贡一模)复数
1+i
4+3i
的虚部是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•自贡一模)集合M={x||x-3|<4},N={x|x2+x-2<0,x∈Z},则 M∩N(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•自贡一模)如图,四棱锥P-ABCD的底ABCD是矩形,PA⊥平面ABCD,AD=2,AB=1,E,F分别是AB,BC的中点N在轴上.
(I)求证:PF⊥FD;
(II)在PA上找一点G,使得EG∥平面PFD;
(III)若PB与平面ABCD所成的角为45°,求二面角A-PD-F的余弦值.

查看答案和解析>>

同步练习册答案