精英家教网 > 高中数学 > 题目详情
10.函数y=ax-5+1(a>0且a≠1)的图象必经过定点(  )
A.(0,1)B.(5,1)C.(5,2)D.(1,5)

分析 由指数函数的定义可知,当指数为0时,指数式的值为1,故令指数x-5=0,解得x=5,y=2,故得定点(5,2).

解答 解:令x-5=0,解得x=5,
此时y=a0+1=2,故得(5,2)
此点与底数a的取值无关,
故函数y=ax-5+1(a>0且a≠1)的图象必经过定点(5,2)
故选:C.

点评 本题考点是指数型函数,考查指数型函数过定点的问题.解决此类题通常是令指数为0取得定点的坐标.属于指数函数性质考查题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.求过两圆x2+y2-4y-6=0,x2+y2-5x+y-6=0交点且过(2,1)的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数在R上是单调函数,f(x)=$\left\{\begin{array}{l}{(3a-1)x+4a,x<1}\\{lo{g}_{a}x,x≥1}\end{array}\right.$,则实数a的取值范围是$\frac{1}{7}$≤a<$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.某班有学生40人,将其数学成绩平均分为两组,第一组的平均分为80,标准差为4,第二组的平均分为90,标准差为6,则该班40名学生的数学成绩平均分为85,标准差为$\sqrt{51}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)的定义域为A,若x1,x2∈A且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数.例如,函数f(x)=x+1(x∈R)是单函数.下列命题:①函数f(x)=x2-2x(x∈R)是单函数;②函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x≥2}\\{2-x,x<2}\end{array}\right.$是单函数;③若f(x)为单函数,x1,x2∈A且x1≠x2,则f(x1)≠f(x2);④函数f(x)在定义域内某个区间D上具有单调性,则f(x)一定是单函数.其中的真命题是③(写出所有真命题的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设a,b为实数,若复数$\frac{1+2i}{a+bi}$=1+i,则(  )
A.a=1,b=3B.a=3,b=1C.a=$\frac{1}{2}$,b=$\frac{3}{2}$D.a=$\frac{3}{2}$,b=$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图所示,边长为1的正方形ABCD的顶点A,D分别在边长为2的正方形A′B′C′D′的边A′B′和A′D′上移动,则$\overrightarrow{A'B}•\overrightarrow{A'C}$的最大值是(  )
A.2B.1+$\sqrt{2}$C.πD.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=$\frac{1}{2}$x2-2ax+(2a-1)lnx,其中a∈R.
(I)a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程.
(Ⅱ)讨论函数y=f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.圆(x-3)2+(y+1)2=1关于点(2,3)对称的曲线方程是(x-1)2+(y-7)2=1.

查看答案和解析>>

同步练习册答案