分析 (Ⅰ)由条件任意角的三角函数的定义求得cos∠AOB 的值.
(Ⅱ)由条件利用同角三角函数的基本关系求出sin∠AOB 的值,再利用两角和差的余弦公式求得cos∠AOC=cos(∠AOB-∠AOC)的值,再利用余弦定理求得AC2 的值.
解答 解:(Ⅰ)由题意可得圆O的半径为OB=$\sqrt{5}$,∴cos∠AOB=$\frac{-1}{\sqrt{5}}$=-$\frac{\sqrt{5}}{5}$.
(Ⅱ)由以上可得,sin∠AOB=$\sqrt{{1-cos}^{2}∠AOB}$=$\frac{2\sqrt{5}}{5}$,又∠BOC=$\frac{π}{4}$,
∴cos∠AOC=cos(∠AOB-∠AOC)=cos∠AOB•cos∠BOC+sin∠AOB•sin∠BOC=-$\frac{\sqrt{5}}{5}$•$\frac{\sqrt{2}}{2}$+$\frac{2\sqrt{5}}{5}$•$\frac{\sqrt{2}}{2}$=$\frac{\sqrt{10}}{10}$,
∴AC2 =OA2+OC2-2OA•OC•cos∠AOC=5+5-10•$\frac{\sqrt{10}}{10}$=10-$\sqrt{10}$.
点评 本题主要考查任意角的三角函数的定义,同角三角函数的基本关系,两角和的差的余弦公式,余弦定理,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | 3 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 6 | B. | 8 | C. | 12 | D. | 24 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{π}{4}$ | D. | 1$-\frac{π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{n+1}$ | B. | $\frac{n}{n+1}$ | C. | $\frac{1}{2}n(n+1)$ | D. | $\frac{1}{2}(n+1)(n+2)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $C_{50}^{10}•C_{10}^5$ | B. | $\frac{{C_{50}^{10}•C_{10}^5}}{2}$ | ||
C. | $C_{50}^{10}•C_{10}^5•A_2^2$ | D. | $C_{50}^5•C_{45}^5•A_2^2$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com