精英家教网 > 高中数学 > 题目详情

已知数列{an}满足2n-1a1+2n-2a2+2n-3a3+…+an=n•2n,记所有可能的乘积aiaj(1≤i≤j≤n)的和为Tn
(1)求{an}的通项公式;
(2)求Tn的表达式;
(3)求证:数学公式+数学公式数学公式…+数学公式数学公式

解:(1)∵数列{an}满足2n-1a1+2n-2a2+2n-3a3+…+an=n•2n

当n=1时,a1=2.
当n≥2时,

两式相减,得

(2)∵aiaj(1≤i≤j≤n)的和为Tn
∴Tn=a1a1+(a1a2+a2a2)+(a1a3+a2a3+a3a3)+…+(a1an+a2an+a3an+…+anan
=(23-22)+(25-23)+(27-24)+…+(22n+1-2n+1
=-(2n+2-4)
=
(3)∵
=
=
=
=
=

=
+…+>()+()+…+(
=
=
+…+
分析:(1)由数列{an}满足2n-1a1+2n-2a2+2n-3a3+…+an=n•2n,知,由迭代法能求出
(2)由aiaj(1≤i≤j≤n)的和为Tn,知Tn=a1a1+(a1a2+a2a2)+(a1a3+a2a3+a3a3)+…+(a1an+a2an+a3an+…+anan)=(23-22)+(25-23)+…+(22n+1-2n+1),由此能求出Tn的表达式.
(3)由=,知=,由==,知+…+>()+()+…+()=,由此能够证明+…+
点评:本题考查数列通项公式的求法和不等式的证明,考查数列、不等式知识,考查化归与转化、分类与整合的数学思想,培养学生的抽象概括能力、推理论证能力、运算求解能力和创新意识.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案