精英家教网 > 高中数学 > 题目详情

【题目】已知命题p:关于x的方程xa在(1+∞)上有实根;命题q:方程1表示的曲线是焦点在x轴上的椭圆.

1)若p是真命题,求a的取值范围;

2)若pq是真命题,求a的取值范围.

【答案】(1)a[3+∞);(2a[34

【解析】

(1)根据基本不等式求最值可得的范围;

(2)求出q为真命题时的范围后,与(1)的结果相交可得结果.

1)若p是真命题,则关于x的方程xa在(1+∞)上有实根,

可得,所以,当且仅当,即时取得等号,所以.

2pq是真命题,则pq均为真命题,

q为真命题,即方程1表示的曲线是焦点在x轴上的椭圆,则0a4

由(1)知,p为真命题时a[3+∞),所以pq是真命题,则a[34).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:

分组(重量)

频数(个)

5

10

20

15

(1) 根据频数分布表计算苹果的重量在的频率;

(2) 用分层抽样的方法从重量在的苹果中共抽取4个,其中重量在的有几个?

(3) 在(2)中抽出的4个苹果中,任取2个,求重量在中各有1个的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)若,试判断的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB是圆O的直径,点C是圆O上异于AB的点,PO垂直于圆O所在的平面,且.D为线段AC的中点.

(1)求证:平面平面

(2)若点E在线段PB上,且,求三棱锥体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥P-ABC中,PB=BC,PA=AC=4,PC=2,若过的平面将三棱锥P-ABC分为体积相等的两部分,则棱PA与平面所成角的余弦值为____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC的内角ABC的对边分别为abc,且(b+ctanC=﹣ctanA

1)求A

2)若bc2,点DBC边上,且ADBD,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图1,是某设计员为一种商品设计的平面logo样式.主体是由内而外的三个正方形构成.该图的设计构思如图2,中间正方形的四个顶点,分别在最外围正方形ABCD的边上,且分所在边为ab两段.设中间阴影部分的面积为,最内正方形的面积为.,且取最大值时,定型该logo的最终样式,则此时ab的取值分别为_____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,其中.点的焦点的右侧,且的准线的距离是距离的3倍.经过点的直线与抛物线交于不同的两点,直线与直线交于点,经过点且与直线垂直的直线轴于点.

(1)求抛物线的方程和的坐标;

(2)判断直线与直线的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,平面,平面平面是边长为2的等边三角形,

1)证明:平面平面

2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案