精英家教网 > 高中数学 > 题目详情

【题目】已知平面多边形中,的中点,现将三角形沿折起,使.

(1)证明:平面

(2)求三棱锥的体积.

【答案】(1)详见解析;(2).

【解析】

1)取的中点,连,即可证明,结合即可证明四边形为平行四边形,问题得证。

2)取中点,连接,先说明平面,即可求得三角形为等边三角形,取的中点,先说明平面,利用体积变换及中点关系,将转化成,问题得解。

解:(1)取的中点,连.

中点,∴的中位线,

.

,∴

∴四边形为平行四边形,∴.

平面平面

平面.

(2)由题意知为等腰直角三角形,为直角梯形.

中点,连接

,∴

,∴平面

平面,∵平面,∴.

∴在直角三角形中,,∴

∴三角形为等边三角形.

的中点,则

平面

的中点,∴到平面的距离等于到平面的距离的一半,

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的. [附:回归直线的斜率和截距的最小二乘估计公式分别为.]

(1)根据频率分布直方图计算图中各小长方形的宽度;

(2)试估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);

(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:

广告投入 (单位:万元)

1

2

3

4

5

销售收益 (单位:万元)

2

3

2

7

由表中的数据显示, 之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出关于的回归直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,以椭圆的上焦点为圆心,椭圆的短半轴为半径的圆与直线截得的弦长为.

(1)求椭圆的方程;

(2)过椭圆左顶点做两条互相垂直的直线,且分别交椭圆于两点(不是椭圆的顶点),探究直线是否过定点,若过定点则求出定点坐标,否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,,点分别为棱的中点.

(Ⅰ)求证:∥平面

()求证:平面平面;

()在线段上是否存在一点,使得直线与平面所成的角为300?如果存在,求出线段的长;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.

1)当0≤x≤200时,求函数vx)的表达式;

2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)fx=xvx)可以达到最大,并求出最大值.(精确到1/小时).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:在三棱锥中,是直角三角形,,点分别为的中点.

1)求证:

2)求直线与平面所成的角的正弦值;

3)求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直棱柱中,分别是的中点,

1)证明:平面

2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了比较两种治疗失眠症的药(分别成为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h)实验的观测结果如下:

服用A药的20位患者日平均增加的睡眠时间:

0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5

2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4

服用B药的20位患者日平均增加的睡眠时间:

3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4

1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5

1)分别计算两组数据的平均数,从计算结果来看,哪种药的效果好?

2)完成茎叶图,从茎叶图来看,哪种药疗效更好?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .若gx)存在2个零点,则a的取值范围是

A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)

查看答案和解析>>

同步练习册答案