精英家教网 > 高中数学 > 题目详情

【题目】已知顶点在原点,焦点在x轴上的抛物线被直线y=2x+1截得的弦长为
(1)求抛物线的方程;
(2)若抛物线与直线y=2x﹣5无公共点,试在抛物线上求一点,使这点到直线y=2x﹣5的距离最短.

【答案】
(1)解:设抛物线的方程为y2=2px,则

消去y得

=

,p2﹣4p﹣12=0,

∴p=﹣2,或p=6,

∴y2=﹣4x,或y2=12x


(2)解:解法一、显然抛物线y2=﹣4x与直线y=2x﹣5无公共点,

设点 为抛物线y2=﹣4x上的任意一点,

点P到直线y=2x﹣5的距离为d,

当t=﹣1时,d取得最小值,

此时 为所求的点

解法二、显然抛物线y2=﹣4x与直线y=2x﹣5无公共点,

设与直线y=2x﹣5平行且与抛物线y2=﹣4x相切的直线方程为y=2x+b,

切点为P,则点P即为所求点.

消去y并化简得:4x2+4(b+1)x+b2=0,

∵直线与抛物线相切,

∴△=16(b+1)2﹣16b2=0,

解得:

代入方程4x2+4(b+1)x+b2=0并解得: ,∴y=﹣1

故所求点为


【解析】(1)设抛物线的方程为y2=2px,由 ,得 ,由抛物线被直线y=2x+1截得的弦长为 能求出抛物线方程.(2)法一、抛物线y2=﹣4x与直线y=2x﹣5无公共点,设点 为抛物线y2=﹣4x上的任意一点,点P到直线y=2x﹣5的距离为d,则 ,故当t=﹣1时,d取得最小值. 法二、抛物线y2=﹣4x与直线y=2x﹣5无公共点,设与直线y=2x﹣5平行且与抛物线y2=﹣4x相切的直线方程为y=2x+b,
切点为P,则点P即为所求点,由此能求出结果.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在[﹣1,1]上的奇函数,且f(1)=1,若x,y∈[﹣1,1],x+y≠0有(x+y)[f(x)+f(y)]>0.
(1)判断f(x)的单调性,并加以证明;
(2)解不等式
(3)若f(x)≤m2﹣2am+1对所有x∈[﹣1,1],a∈[﹣1,1]恒成立.求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,分别是角A,B,C的对边,且.

(1)求角的值;

(2)已知函数,将的图像向左平移个单位长度后得到函数的图像,求的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线在直角坐标系中的参数方程为为参数, 为倾斜角),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,在极坐标系中,曲线的方程为.

(1)写出曲线的直角坐标方程;

(2)点,若直线与曲线交于两点,求使为定值的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(6,2),B(3,2),动点M满足|MA|=2|MB|.
(1)求点M的轨迹方程;
(2)设M的轨迹与y轴的交点为P,过P作斜率为k的直线l与M的轨迹交于另一点Q,若C(1,2k+2),求△CPQ面积的最大值,并求出此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中, 底面 分别是 的中点, 上,且

(1)求证: 平面

(2)在线段上上是否存在点,使二面角

的大小为?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若直线 l1和l2 是异面直线,l1在平面 α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是( )
A.l与l1 , l2都不相交
B.l与l1 , l2都相交
C.l至多与l1 , l2中的一条相交
D.l至少与l1 , l2中的一条相交

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点也是椭圆的一个焦点,的公共弦的长为.

(1)求的方程;

(2)过点的直线相交于两点,与相交于两点,且同向

)若,求直线的斜率

)设在点处的切线与轴的交点为,证明:直线绕点旋转时,总是钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在轴上,离心率.以两个焦点和短轴的两个端点为顶点的四边形的周长为8,面积为

(Ⅰ)求椭圆的方程;

(Ⅱ)若点为椭圆上一点,直线的方程为,求证:直线与椭圆有且只有一个交点.

查看答案和解析>>

同步练习册答案