【题目】已知三棱锥(如图一)的平面展开图(如图二)中,四边形为边长等于的正方形,和均为正三角形,在三棱锥中:
(I)证明:平面平面;
(Ⅱ)若点在棱上运动,当直线与平面所成的角最大时,求二面角的余弦值.
图一
图二
【答案】(1)见解析(2)
【解析】
(1)设AC的中点为O,证明PO垂直AC,OB,结合平面与平面垂直判定,即可.(2)建立直角坐标系,分别计算两相交平面的法向量,结合向量的数量积公式,计算夹角,即可.
(Ⅰ)设的中点为,连接,.
由题意,得,
,.
因为在中,,为的中点,
所以,
因为在中,,,,
,所以.
因为,平面,所以平面,
因为平面,所以平面平面.
(Ⅱ)由(Ⅰ)知,,,平面,
所以是直线与平面所成的角,
且,
所以当最短时,即是的中点时,最大.
由平面,,所以,,于是以
,,所在直线分别为轴,轴,轴建立如图示空间直角坐标系,
则,,,,,,
,,.
设平面的法向量为,则
由得:.
令,得,,即.
设平面的法向量为,
由得:,
令,得,,即.
.
由图可知,二面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】关于异面直线,有下列五个命题:
①过直线有且仅有一个平面,使;
②过直线有且仅有一个平面,使;
③在空间存在平面,使,;
④在空间不存在平面,使,;
⑤过异面直线外一点一定存在一个平面,使,其中,
正确的命题的个数为( )
A.2B.3C.4D.5
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据.
x | 6 | 8 | 10 | 12 |
y | 2 | 3 | 5 | 6 |
(1)请根据上表提供的数据,求出y关于x的线性回归方程;
(2)判断该高三学生的记忆力x和判断力是正相关还是负相关;并预测判断力为4的同学的记忆力.
(参考公式:)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(,)为奇函数,且相邻两对称轴间的距离为.
(1)当时,求的单调递减区间;
(2)将函数的图象沿轴方向向右平移个单位长度,再把横坐标缩短到原来的(纵坐标不变),得到函数的图象.当时,求函数的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在上的函数满足,.
(1)求函数的解析式;
(2)求函数的单调区间;
(3)如果、、满足,那么称比更靠近.当且时,试比较和哪个更靠近,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数f(x)=sinx的图象向右平移个单位,横坐标缩小至原来的倍(纵坐标不变)得到函数y=g(x)的图象.
(1)求函数g(x)的解析式;
(2)若关于x的方程2g(x)-m=0在x∈[0,]时有两个不同解,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某种气垫船的最大航速是海里小时,船每小时使用的燃料费用和船速的平方成正比.若船速为海里小时,则船每小时的燃料费用为元,其余费用(不论船速为多少)都是每小时元。甲乙两地相距海里,船从甲地匀速航行到乙地.
(1)试把船从甲地到乙地所需的总费用,表示为船速(海里小时)的函数,并指出函数的定义域;
(2)当船速为每小时多少海里时,船从甲地到乙地所需的总费用最少?最少费用为多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com