精英家教网 > 高中数学 > 题目详情

【题目】在四棱锥中,平面,四边形是矩形,分别是棱的中点.

(1)求证:平面

(2)若,求点到平面的距离.

【答案】(1)证明见解析;(2)

【解析】

1)连接,证明平面平面,即可说明平面

2)先计算出,再利用等体积法,即可求出点到平面的距离.

(1)证明:连接,∵在矩形中,分别是中点,

,∴四边形是平行四边形,∴.

的中点,∴.

平面平面

平面平面.

,∴平面平面.

平面,∴平面.

(2)解:法一:∵平面,∴平面.

在平面内,作,垂足为,则.

,∴平面,∴长是点到平面的距离.

在矩形中,中点,.

.

,∴

即点到平面的距离为.

法二:设到平面的距离为

在矩形中,,∴.

平面平面,∴

,∴

的面积为.

的面积为

,∴,即点到平面的距离为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】今年1月至2月由新型冠状病毒引起的肺炎病例陡然增多,为了严控疫情传播,做好重点人群的预防工作,某地区共统计返乡人员人,其中岁及以上的共有.人中确诊的有名,其中岁以下的人占.

1)请将下面的列联表补充完整,并判断是否有%的把握认为是否确诊患新冠肺炎与年龄有关;

确诊患新冠肺炎

未确诊患新冠肺炎

合计

50岁及以上

40

50岁以下

合计

10

100

2)为了研究新型冠状病毒的传染源和传播方式,从名确诊人员中随机抽出人继续进行血清的研究,表示被抽取的人中岁以下的人数,求的分布列以及数学期望.

参考表:

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

参考公式:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的两个顶点的坐标分别为,且所在直线的斜率之积等于,记顶点的轨迹为.

Ⅰ)求顶点的轨迹的方程;

Ⅱ)若直线与曲线交于两点,点在曲线上,且的重心(为坐标原点),求证:的面积为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)讨论函数的单调性;

(Ⅱ)当时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中.

(1)当时,的零点个数;

(2)若的整数解有且唯一,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一周岁生日开始,每年到银行储蓄元一年定期,若年利率为保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为  

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知棱台,平面平面DE分别是的中点。

)证明:

)求与平面所成角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代十进制的算筹计数法,在数学史上是一个伟大的创造,算筹实际上是一根根同长短的小木棍.如图,是利用算筹表示数的一种方法.例如:3可表示为“”,26可表示为“”.现有6根算筹,据此表示方法,若算筹不能剩余,则可以用9数字表示两位数的个数为  

A.13B.14C.15D.16

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,平面,平面平面是边长为2的等边三角形,

1)证明:平面平面

2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案