精英家教网 > 高中数学 > 题目详情
4.在△ABC中,如果a=2,c=2$\sqrt{3}$,∠A=30°,那么△ABC的面积等于2$\sqrt{3}$或$\sqrt{3}$.

分析 由A的度数求值sinA的值,再由a、c的值,利用正弦定理求出sinC的值,再利用特殊角的三角函数值求出C的度数,进而求出B的度数,确定出sinB的值,由a,c及sinB的值,利用三角形的面积公式即可求出三角形ABC的面积.

解答 解:∵a=2,c=2$\sqrt{3}$,A=30°,
∴由正弦定理$\frac{a}{sinA}=\frac{c}{sinC}$,
得:sinC=$\frac{c•sinA}{a}$=$\frac{\sqrt{3}}{2}$,
∴C=60°或120°,
∴B=90°或30°,
则S△ABC=$\frac{1}{2}$acsinB=2$\sqrt{3}$或$\sqrt{3}$.
故答案为:2$\sqrt{3}$或$\sqrt{3}$.

点评 此题考查了正弦定理,三角形的面积公式,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知f(x)是定义在R上的奇函数,对任意x∈R,都有f(x+4)=f(x),若f(1)=2,则f(2015)=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若点P(x,y)满足x+y=1,则$\sqrt{{{(x+2)}^2}+{{(y-1)}^2}}+\sqrt{{x^2}+{y^2}}$的最小值为(  )
A.$\sqrt{5}$B.$\sqrt{7}$C.3D.$\sqrt{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若定义在区间(-1,0)上的函数f(x)=log3a(x+1)满足f(x)<0,则a的取值范围是($\frac{1}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知f(x)=$\left\{\begin{array}{l}{{x}^{2}+1(x<1)}\\{-2x+3(x≥1)}\end{array}\right.$,则f(f(2))=(  )
A.-7B.2C.-1D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某单位有老年人30人,中年人90人,青年人60人,为了调查他们的身体健康状况,采用分层抽样的方法从他们中间抽取一个容量为36的样本,则应抽取老年人的人数是(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=log2(x2-2x)的定义域为(-∞,0)∪(2,+∞),单调递减区间为(-∞,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ax+$\frac{b}{x}$,且f(1)=2,f(2)=$\frac{5}{2}$.
(1)求a和b的值;
(2)判断函数f(x)的奇偶性;
(3)判断函数f(x)在区间(0,+∞)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在底面是边长为4的等边三角形的直三棱柱ABO-A1B1O1中,|AA1|=6,D为A1B1的中点,
(1)A1的坐标是(2$\sqrt{3}$,2,0);
(2)$\overrightarrow{OD}$的坐标是($\sqrt{3}$,3,6);
(3)直线OD与面O1OAA1所成角是arcsin$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案