精英家教网 > 高中数学 > 题目详情
已知函数
(1)当b=0时,若f(x)在(-∞,2]上单调递减,求a的取值范围;
(2)求满足下列条件的所有整数对(a,b):存在x,使得f(x)是f(x)的最大值,g(x)是g(x)的最小值;
(3)对满足(II)中的条件的整数对(a,b),试构造一个定义在D=x|x∈R且x≠2k,k∈Z上的函数h(x),使h(x+2)=h(x),且当x∈(-2,0)时,h(x)=f(x).
【答案】分析:(1)当b=0时,f(x)=ax2-4x,讨论a是否为0,然后根据f(x)在(-∞,2]上单调递减建立关系式,解之即可求出a的取值范围;
(2)若a=0,,则f(x)无最大值,故a≠0,则f(x)为二次函数,根据f(x)有最大值,建立关系式,然后求出f(x)有最大值时的自变量x,最后根据g(x)取最小值时,x=a,根据条件建立等式,求出满足条件的a与b,从而求出所求;
(3)当整数对是(-1,-1),(-1,3)时,f(x)=-x2-2x根据h(x)是以2为周期的周期函数,当x∈(-2,0)时,h(x)=f(x),构造h(x)如下:当x∈(2k-2,2k),k∈Z,则,h(x)=h(x-2k)=f(x-2k)=-(x-2k)2-2(x-2k)即可.
解答:解:(1)当b=0时,f(x)=ax2-4x,(1分)
若a=0,f(x)=-4x,则f(x)在(-∞,2]上单调递减,符合题意;(3分)
若a≠0,要使f(x)在(-∞,2]上单调递减,
必须满足(5分)
∴0<a≤1.综上所述,a的取值范围是[0,1](6分)
(2)若a=0,,则f(x)无最大值,(7分)
故a≠0,∴f(x)为二次函数,
要使f(x)有最大值,必须满足即a<0且,(8分)
此时,时,f(x)有最大值.(9分)
又g(x)取最小值时,x=a,(10分)
依题意,有,则,(11分)
∵a<0且,∴,得a=-1,(12分)
此时b=-1或b=3.
∴满足条件的整数对(a,b)是(-1,-1),(-1,3).(13分)
(3)当整数对是(-1,-1),(-1,3)时,f(x)=-x2-2x∵h(x+2)=h(x),
∴h(x)是以2为周期的周期函数,(14分)
又当x∈(-2,0)时,h(x)=f(x),构造h(x)如下:当x∈(2k-2,2k),k∈Z,则,h(x)=h(x-2k)=f(x-2k)=-(x-2k)2-2(x-2k),
故h(x)=-(x-2k)2-2(x-2k),x∈(2k-2,2k),k∈Z.(16分)
点评:根据开口方向和对称轴建立关系式是解决二次函数的单调性的关键,同时考查了函数的周期性和函数的最值及其几何意义,涉及的知识点较多,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源:2012届河南省郑州盛同学校高三上学期第一次月考文科数学 题型:解答题

(本小题满分16分)
定义在D上的函数,如果满足:对任意,存在常数,都有成立,则称是D上的有界函数,其中M称为函数的上界.
已知函数
(1)当a=1时,求函数上的值域,并判断函数上是否为有界数,请说明理由;
(2)若函数上是以3为上界的有界函数,求实数a的取值范围;
(3)若,函上的上界是,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖南省张家界一中高三(上)第三次月考数学试卷(理科)(解析版) 题型:解答题

已知函数),
(1)当x为何值时,f(x)取得最大值,并求函数f(x)的值域;
(2)解不等式f(x)≥1.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年上海市浦东新区高三第三次模拟考试理科数学试卷(解析版) 题型:解答题

(本大题满分18分)本大题共有3个小题,第1小题满分4分,第2小题满6分,第3小题满8分.

已知函数

(1)当为偶函数时,求的值。

(2)当时,上是单调递增函数,求的取值范围。

(3)当时,(其中),若,且函数的图像关于点对称,在处取得最小值,试探讨应该满足的条件。

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河南省高三上学期第一次月考文科数学 题型:解答题

(本小题满分16分)

定义在D上的函数,如果满足:对任意,存在常数,都有成立,则称是D上的有界函数,其中M称为函数的上界.

已知函数

 

(1)当a=1时,求函数上的值域,并判断函数上是否为有界数,请说明理由;

(2)若函数上是以3为上界的有界函数,求实数a的取值范围;

(3)若,函数上的上界是,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年重庆西南师大附中高第一次月考理科数学卷 题型:解答题

(本小题满分12分)

定义在D上的函数,如果满足:对任意,存在常数,都有成立,则称D上的有界函数,其中M称为函数的上界.

已知函数

(1)   当a=1时,求函数上的值域,并判断函数上是否为有界函数,请说明理由;

(2)若函数上是以3为上界的有界函数,求实数a的取值范围;

(3)若,函数上的上界是,求的取值范围.

 

查看答案和解析>>

同步练习册答案