精英家教网 > 高中数学 > 题目详情

【题目】某游乐场过山车轨道在同一竖直钢架平面内,如图所示,矩形的长130米,宽120米,圆弧形轨道所在圆的圆心为0,圆O分别相切于点ADCT的中点.现欲设计过山车轨道,轨道由五段连接而成:出发点N在线段上(不含端点,游客从点Q处乘升降电梯至点N),轨道第一段与圆O相切于点M,再沿着圆孤轨道到达最高点A,然后在点A处沿垂直轨道急速下降至点O处,接着沿直线轨道滑行至地面点G处(设计要求MOG三点共线),最后通过制动装置减速沿水平轨道滑行到达终点R,轨道总长度为l.

1)试将l表示为的函数,并写出的取值范围;

2)求l最小时的值.

【答案】1,(2

【解析】

1)作,垂足为点,作,垂足为点,可得,进而得出以及的取值范围;

2)对进行求导,求出函数的单调性,即可求得最小时的值.

1)作,垂足为点,作,垂足为点,如图所示:

2

,可得;令,可得.

,则当时,为单调递减;当时,为单调递增.

∴当时,函数取得最小值,即最小.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知平面直角坐标系中,直线的参数方程为为参数).以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,且直线与曲线交于两点.

1)求实数的取值范围;

2)若,点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底)。

(Ⅰ)求函数的单调区间;

(Ⅱ)若存在均属于区间,且,使,证明:

(Ⅲ)对于函数定义域内的任意实数,若存在常数,使得都成立,则称直线为函数的分界线。试探究当时,函数是否存在“分界线”?若存在,请给予证明,并求出的值;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数a为常数)的最大值为0.

1)求实数a的值;

2)设函数,当时,求证:函数有两个不同的零点),且.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点,直线相交于点,且它们的斜率之积为,记动点的轨迹为曲线

(1)求曲线的方程;

(2)过点的直线与曲线交于两点,是否存在定点,使得直线斜率之积为定值,若存在,求出坐标;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计的值:先请名同学,每人随机写下一个都小于的正实数对,再统计两数能与构成钝角三角形三边的数对的个数;最后再根据统计数m来估计的值.假如统计结果是那么可以估计______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年电商双十一大战即将开始.某电商为了尽快占领市场,抢占今年双十一的先机,对成都地区年龄在1575岁的人群是否网上购物的情况进行了调查,随机抽取了100人,其年龄频率分布表和使用网上购物的人数如下所示:(年龄单位:岁)

年龄段

频率

0.1

0.32

0.28

0.22

0.05

0.03

购物人数

8

28

24

12

2

1

1)若以45岁为分界点,根据以上统计数据填写下面的列联表,并判断能否在犯错误的概率不超过0.001的前提下认为网上购物与年龄有关?

年龄低于45

年龄不低于45

总计

使用网上购物

不使用网上购物

总计

2)若从年龄在的样本中各随机选取2人进行座谈,记选中的4人中使用网上购物的人数为,求随机变量的分布列和数学期望.

参考数据:

0.025

0.010

0.005

0.001

3.841

6.635

7.879

10.828

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,直线

1)求函数的极值;

2)试确定曲线与直线的交点个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论函数上的单调性;

2)若存在两个极值点,记作,若,求a的取值范围;

3)求证:当时,(其中e为自然对数的底数)

查看答案和解析>>

同步练习册答案