【题目】设。,,,是中的数所成的数列,它包含的不以1结尾的任何排列,即对于的四个数的任意一个不以1结尾的排列,,都有,,,,使得,并且,求这种数列的项数的最小值。
科目:高中数学 来源: 题型:
【题目】某果农从经过筛选(每个水果的大小最小不低于50克,最大不超过100克)的10000个水果中抽取出100个样本进行统计,得到如下频率分布表:
级别 | 大小(克) | 频数 | 频率 |
一级果 | 5 | 0.05 | |
二级果 | |||
三级果 | 35 | ||
四级果 | 30 | ||
五级果 | 20 | ||
合计 | 100 |
请根据频率分布表中所提供的数据,解得下列问题:
(1)求的值,并完成频率分布直方图;
(2)若从四级果,五级果中按分层抽样的方法抽取5个水果,并从中选出2个作为展品,求2个展品中仅有1个是四级果的概率;
(3)若将水果作分级销售,预计销售的价格元/个与每个水果的大小克关系是:,则预计10000个水果可收入多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,已知椭圆 过点,离心率为,左、右焦点分别为、,点为直线上且不在轴上的任意一点,直线和与椭圆的交点分别为、和、,为坐标原点.
(1)求椭圆的标准方程;
(2)设直线、的斜线分别为、.
(i)证明:;
(ii)问直线上是否存在点,使得直线、、、的斜率、、、满足?若存在,求出所有满足条件的点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在坐标原点O的椭圆C经过点A(),且点F(,0)为其右焦点.
(1)求椭圆C的方程;
(2)是否存在直线与椭圆C交于B,D两点,满足,且原点到直线l的距离为?若存在,求出直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给定,,,所对的边分别是,,,在所在平面作直线与的某两边相交,沿将折成一个空间图形,将由分成的小三角形的不在上的顶点与另一部分的顶点连接,形成一个三棱锥或四棱锥。问:
(1)当时,如何作,并折成何种锥体,才能使所得锥体体积最大?(需详证)
(2)当时,如何作,并折成何种锥体,才能使所得锥体体积最大?(叙述结果,不要证明)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,圆,把圆上每一点的横坐标伸长为原来的2倍,纵坐标不变,得到曲线,且倾斜角为,经过点的直线与曲线交于两点.
(1)当时,求曲线的普通方程与直线的参数方程;
(2)求点到两点的距离之积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程
点P是曲线C1:(x-2)2+y2=4上的动点,以坐标原点O为极点,x轴的正半轴为极轴
建立极坐标系,将点P绕极点O逆时针90得到点Q,设点Q的轨迹为曲线C2.
求曲线C1,C2的极坐标方程;
射线= (>0)与曲线C1,C2分别交于A,B两点,定点M(2,0),求MAB的面积
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com