精英家教网 > 高中数学 > 题目详情

(.(本小题满分12分)
设某几何体及其三视图:如图(尺寸的长度单位:m)

(1)OAC的中点,证明:BO⊥平面APC
(2)求该几何体的体积;
(3)求点A到面PBC的距离.

解:(1)证明:由三视图可知,面PAC⊥面ABC,BO⊥AC
∴BO⊥平面APC.(3分)

(2)过P点在面PAC内作PE⊥AC交AC于E,由俯视图可知:CE=1,AE=3
又BO=3,AC=4,∴SABC=×4×3=6
∴VP-ABC=×6×2=4.(7分)
(3)∵PC==,BE==
∴PB==,BC==
cos∠PBC===

sin∠PBC==
∴SPBC=PB·BC·sin∠PBC=··

设点A到面PBC的距离为h.
∵VA-PBC=VP-ABC,∴h·SPBC=4
∴h===.(12分)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题共2小题,每小题6分,满分12分)
(1)已知梯形ABCD是直角梯形,按照斜二测画法画出它的直观图如图所示,其中,,,求直角梯形以BC为旋转轴旋转一周形成的几何体的表面积。
(2)定线段AB所在的直线与定平面α相交,P为直线AB外的一点,且P不在α内,若直线AP、BP与α分别交于C、D点,求证:不论P在什么位置,直线CD必过一定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,
总计耗用9.6米铁丝,再用平方米塑料片制成圆柱的侧面和下底面(不安装上底面)。
(Ⅰ)当圆柱底面半径取何值时,取得最大值?并求出该最大值(结果精确到0.01平方米);
(Ⅱ)若要制作一个如图放置的,底面半径为0.3米的灯笼,请作出用于灯笼的三视图(作图时,不需考虑骨架等因素)。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,D,E分别为三棱锥P—ABC的棱AP、AB上的点,且AD:DP=AE:EB=1:3.求证:DE//平面PBC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)
下图是一几何体的直观图、主视图、俯视图、左视图.

(Ⅰ)若的中点,求证:;
(Ⅱ)证明;
(Ⅲ)求面与面所成的二面角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)设圆台的高为3,其轴截面(过圆台轴的截面)如图
所示,母线A1A底面圆的直径AB的夹角为,在轴截面中
A1BA1A,求圆台的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知某几何体的三视图如图,其中正(侧)视图上部为正三角形,下部为矩形,俯视图是正方形.
(1)画出该几何体的直观图(6分)
(2)求该几何体的表面积和体积.(8分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,平面平面
是等边三角形,已知
(Ⅰ)设上的一点,证明:平面平面
(Ⅱ)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

((本小题满分12分)
如图,多面体ABCD—EFG中,底面ABCD为正方形,GD//FC//AE,AE⊥平面ABCD,其正视图、俯视图如下:

(I)求证:平面AEF⊥平面BDG;
(II)若存在使得,二面角A—BG—K的大小为,求的值。

查看答案和解析>>

同步练习册答案