精英家教网 > 高中数学 > 题目详情

【题目】下列四个命题:

命题a=0,ab=0”的否命题是a=0,ab≠0”;

已知命题p:x∈R,x2+x+1<0,p:x∈R,x2+x+1≥0;

若命题p”与命题“pq”都是真命题,则命题q一定是真命题;

命题0<a<1,loga(a+1)<lo.

其中正确命题的序号是_____.(把所有正确的命题序号都填上)

【答案】②③

【解析】分析:利用命题的否定的形式判断出错误;利用含量词的命题的否定形式判断出正确;利用复合命题的真假与构成其简单命题的真假的关系判断出正确;利用对数函数的单调性判断出错误

详解:对于,由于否命题是对命题的条件,结论同时否定,只否定了结论,条件没否定,故错误

对于,由于含量词的命题有否定公式是:量词交换,结论否定,故正确

对于③,为真,则假,

为真,有真,则一定为真,故正确

对于④,是减函数,

,故错误

综上所述,正确命题的序号是②③

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆的圆心轴的正半轴上,半径为2,且被直线截得的弦长为.

(1)求圆的方程;

(2)设是直线上的动点,过点作圆的切线,切点为,证明:经过三点的圆必过定点,并求出所有定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,C上有n个不同的点P1,P2,…,Pn,设两两连接这些点所得线段PiPj,任意三条在圆内都不共点,试证它们在圆内共≥4).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高铁、网购、移动支付和共享单车被誉为中国的“新四大发明”,彰显出中国式创新的强劲活力.某移动支付公司从我市移动支付用户中随机抽取100名进行调查,得到如下数据:

每周移动支付次数

1次

2次

3次

4次

5次

6次及以上

10

8

7

3

2

15

5

4

6

4

6

30

合计

15

12

13

7

8

45

(1)把每周使用移动支付超过3次的用户称为“移动支付活跃用户”,由以上数据完成下列2×2列联表,并判断能否在犯错误的概率不超过0.005的前提下,认为“移动支付活跃用户”与性别有关?

移动支付活跃用户

非移动支付活跃用户

总计

总计

100

(2)把每周使用移动支付6次及6次以上的用户称为“移动支付达人”,视频率为概率,在我市所有“移动支付达人”中,随机抽取4名用户.为了鼓励男性用户使用移动支付,对抽出的男“移动支付达人”每人奖励300元,记奖励总金额为,求的分布列及数学期望.

附公式及表如下:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某机构通过对某企业今年的生产经营情况的调查,得到每月利润(单位:万元)与相应月份数的部分数据如表:

1

4

7

12

229

244

241

196

(1)根据如表数据,请从下列三个函数中选取一个恰当的函数描述的变化关系,并说明理由,

(2)利用(1)中选择的函数,估计月利润最大的是第几个月,并求出该月的利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,已知b(1+cosC)=c(2﹣cosB).
(Ⅰ)求证:a,c,b成等差数列;
(Ⅱ)若C= ,△ABC的面积为4 ,求c.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E: (a>b>0)的左焦点F1与抛物线y2=﹣4x的焦点重合,椭圆E的离心率为 ,过点M (m,0)(m> )作斜率不为0的直线l,交椭圆E于A,B两点,点P( ,0),且 为定值.
(Ⅰ)求椭圆E的方程;
(Ⅱ)求△OAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于下列命题:

①若是第一象限角,且,则

②函数是偶函数;

③函数的一个对称中心是

④函数上是增函数,

所有正确命题的序号是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商品在近30天内每件的销售价格p()与时间t()的函数关系是该商品的日销售量Q()与时间t()的函数关系是Q=-t40(0<t≤30tN)

(1)求这种商品的日销售金额的解析式;

(2)求日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?

查看答案和解析>>

同步练习册答案