精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=2lnx﹣ax+a(a∈R).
(1)讨论f(x)的单调性;
(2)若f(x)≤0恒成立,证明:当0<x1<x2时,

【答案】
(1)解:求导得f′(x)= ,x>0.

若a≤0,f′(x)>0,f(x)在(0,+∞)上递增;

若a>0,当x∈(0, )时,f′(x)>0,f(x)单调递增;

当x∈( ,+∞)时,f′(x)<0,f(x)单调递减.


(2)解:由(1)知,若a≤0,f(x)在(0,+∞)上递增,

又f(1)=0,故f(x)≤0不恒成立.

若a>2,当x∈( ,1)时,f(x)递减,f(x)>f(1)=0,不合题意.

若0<a<2,当x∈(1, )时,f(x)递增,f(x)>f(1)=0,不合题意.

若a=2,f(x)在(0,1)上递增,在(1,+∞)上递减,

f(x)≤f(1)=0,合题意.

故a=2,且lnx≤x﹣1(当且仅当x=1时取“=”).

当0<x1<x2时,f(x2)﹣f(x1)=2ln ﹣2(x2﹣x1

<2( ﹣1)﹣2(x2﹣x1

=2( ﹣1)(x2﹣x1),

<2( ﹣1)


【解析】(1)利用导数的运算法则可得f′(x),对a分类讨论即可得出其单调性;(2)通过对a分类讨论,得到当a=2,满足条件且lnx≤x﹣1(当且仅当x=1时取“=”).利用此结论即可证明.
【考点精析】认真审题,首先需要了解函数单调性的性质(函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集),还要掌握利用导数研究函数的单调性(一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知R是实数集, ,则N∩RM=(
A.(1,2)
B.[0,2]
C.
D.[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1若不等式的解集为,求实数的值;

2解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是函数在区间上的图象,为了得到这个函数的图象,只需将y=sinx的图象

A. 向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变

B. 向左平移至个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变

C. 向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变

D. 向左平移个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn , 且S3=9,a1 , a3 , a7成等比数列.
(1)求数列{an}的通项公式;
(2)若an≠a1时,数列{bn}满足bn=2 ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:x>1, x>0,命题q:x∈R,x3>3x , 则下列命题为真命题的是(
A.p∧q
B.p∨(¬q)
C.p∧(¬q)
D.(¬p)∧q

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨),一位居民的月用水量不超过的部分按平价收费,超出的部分按议价收费。为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照…,分成9组,制成了如图所示的频率分布直方图。

(1)求直方图中的值

(2)设该市有60万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;

(3)若该市政府希望使82%的居民每月的用水量不超过标准(吨),估计的值,并说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=0,an+1=an+2 +1
(1)求证数列{ }是等差数列,并求出an的通项公式;
(2)若bn= ,求数列{b}的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】31届夏季奥林匹克运动会于201685日至821日在巴西里约热内卢举行.如表是近五届奥运会中国代表团和俄罗斯代表团获得的金牌数的统计数据(单位:枚).

30届伦敦

29届北京

28届雅典

27届悉尼

26届亚特兰大

中国

38

51

32

28

16

俄罗斯

24

23

27

32

26

(1)根据表格中两组数据在答题卡上完成近五届奥运会两国代表团获得的金牌数的茎叶图,并通过茎叶图比较两国代表团获得的金牌数的平均值及分散程度(不要求计算出具体数值,给出结论即可);

(2)如表是近五届奥运会中国代表团获得的金牌数之和(从第26届算起,不包括之前已获得的金牌数)随时间变化的数据:

时间(届)

26

27

28

29

30

金牌数之和(枚)

16

44

76

127

165

作出散点图如图:

由图可以看出,金牌数之和与时间之间存在线性相关关系,请求出关于的线性回归方程,并预测从第26届到第32届奥运会时中国代表团获得的金牌数之和为多少?

附:对于一组数据,…, ,其回归直线的斜率和截距的最小二乘估计分别为:

查看答案和解析>>

同步练习册答案