精英家教网 > 高中数学 > 题目详情

过点P(数学公式,-1)作抛物线y=ax2的两条切线PM、PB (U,B为切点),若数学公式=0,则 a=________.


分析:先设出切线方程,与抛物线方程联立可得关于x的二次方程,由于是切线,对应的判别式为0,利用PA、PB的斜率是方程的根以及两直线垂直可得a值.
解答:设过点P(,-1)作抛物线y=ax2的切线方程为:y+1=k(x-),联立?ax2-kx+k+1=0.
因为是切线,所以△=k2-4a(+1)=0?k2-6ak-4a=0.①
直线PA、PB的斜率为上述方程①的根,
又由=0得:kPA•KPB=-1=-4a?a=
故答案为:
点评:本题主要考查向量在几何中的应用以及直线与抛物线的综合问题,考查计算能力和分析问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知点D(0,-2),过点D作抛线C1:x2=2py(p>0)的切线l,切点A在第一象限,如图.
(1)求切点A的纵坐标;
(2)若离心率为
3
2
的椭圆C:
y2
a 2
+
x2
b2
=1(a>b>0)恰好经过切点A,设切线l交椭圆的另一点为B,记切线l,OA,OB的斜率分别为k,k2,k3,若2k1+k2=3k,求抛物线C1和椭圆C2的方程.
(3)设P、Q分别是(2)中的椭圆C2的右顶点和上顶点,M是椭圆C2在第一象限的任意一点,求四边形OPMQ面积的最大值以及此时M点的坐标.

查看答案和解析>>

科目:高中数学 来源:山东省实验中学2011届高三5月针对性练习数学理综试题 题型:044

已知点D(0,-2),过点D作抛线C1:x2=2py(p>0)的切线l,切点A在第一象限,如图.

(1)求切点A的纵坐标;

(2)若离心率为的椭圆恰好经过切点A,设切线l交椭圆的另一点为B,记切线l,OA,OB的斜率分别为k,k1,k2,若2k1+k2=3k,求抛物线C1和椭圆C2的方程.

(3)设P、Q分别是(2)中的椭圆C2的右顶点和上顶点,M是椭圆C2在第一象限的任意一点,求四边形OPMQ面积的最大值以及此时M点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线上的一点A(1,1)作抛物线的切线,分别交x轴于D,交y轴于B,点C在抛物线上,点E在线段AC上,满足;点F在线段BC上,满足, 且=1,线段CD与EF交于点P.当点C在抛物线上移动时,求点P的抛迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,过抛物线y2=2px(p>0)上一定点P(x0,y0)(y0>0),作两条直线分别交抛的线于A(x1,y1)、B(x2,y2).

(1)求该抛物线上纵坐标为的点到其焦点F的距离;

(2)当PA与PB的斜率存在且倾斜角互补时,求的值,并证明直线AB的斜率是非零常数.

查看答案和解析>>

同步练习册答案