精英家教网 > 高中数学 > 题目详情

【题目】已知四棱锥P-ABCD的体积为,其三视图如图所示,其中正视图为等腰三角形,侧视图为直角三角形,俯视图是直角梯形.

(1)求正视图的面积;

(2)求四棱锥P-ABCD的侧面积.

【答案】(1);(2)

【解析】试题分析:1)根据四棱锥的体积得PA=,进而得正视图的面积;

(2)过A作AE∥CD交BC于E,连接PE,确定四个侧面积面积S△PAB,S△PAD, S△PCD, S△PBC求和即可.

试题解析:

(1) 如图所示四棱锥P-ABCD的高为PA,底面积为S=·CD=×1=

∴四棱锥P-ABCD的体积V四棱锥P-ABCDS·PA=×·PA=,∴PA=

∴正视图的面积为S=×2×.

(2)如图所示,过A作AE∥CD交BC于E,连接PE.根据三视图可知,E是BC的中点,

且BE=CE=1,AE=CD=1,且BC⊥AE,AB=

又PA⊥平面ABCD,∴PA⊥BC,PA⊥DC,PD=,∴BC⊥面PAE,∴BC⊥PE,

又DC⊥AD,∴DC⊥面PAD,∴DC⊥PD,且PA⊥平面ABCD.∴PA⊥AE,

∴PE2=PA2+AE2=3.∴PE=.

∴四棱锥P-ABCD的侧面积为

S=S△PAB+ S△PAD+ S△PCD+ S△PBC··+··1+·1·+·2·=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知二次函数的图象过点,且与轴有唯一的交点.

(1)求的表达式;

(2)设函数,若上是单调函数,求实数的取值范围;

(3)设函数,记此函数的最小值为,求的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga (a>0且a≠1)是奇函数.
(1)求实数m的值;
(2)判断函数f(x)在区间(1,+∞)上的单调性并说明理由;
(3)当x∈(n,a﹣2)时,函数f(x)的值域为(1,+∞),求实数n,a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】综合题。
(1)已知f( +1)=x+2 ,求f(x)的解析式;
(2)已知f(x)是一次函数,且满足3f(x+1)﹣2f(x﹣1)=2x+17,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)将函数化成的形式,并求函数的增区间;

(2)若函数满足:对任意都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于x的方程x3﹣ax+2=0有三个不同实数解,则实数a的取值范围是(
A.(2,+∞)
B.(3,+∞)
C.(0,3 )
D.(﹣∞,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧面底面,侧棱,底面为直角梯形,其中中点.

1)求证 平面

2)求异面直线所成角的余弦值;

3)线段上是否存在,使得它到平面的距离为?若存在,求出的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市在发展过程中,交通状况逐渐受到有关部门的关注,据有关统计数据显示,从上午6点到中午12点,车辆通过该市某一路段的用时y(分钟)与车辆进入该路段的时刻t之间的关系可近似地用如下函数给出: y=
求从上午6点到中午12点,通过该路段用时最多的时刻.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四面体P﹣ABCD中,△ABD是边长为2的正三角形,PC⊥底面ABCD,AB⊥BP,BC=
(1)求证:PA⊥BD;
(2)已知E是PA上一点,且BE∥平面PCD.若PC=2,求点E到平面ABCD的距离.

查看答案和解析>>

同步练习册答案