精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,平面.底面是菱形,

(Ⅰ)求证:直线平面

(Ⅱ)求直线与平面所成角的正切值;

(Ⅲ)已知在线段上,且,求二面角的余弦值.

【答案】I)见解析;(II;(III

【解析】

I)由菱形的性质,得ACBD;由PA⊥平面ABCD证出PABD,结合ACPA是平面PAC内的相交直线,可得BD⊥平面PAC

II)过BBEAD于点E,连结PE.由PA⊥平面ABCDPABE,结合PAADA证出BE⊥平面PAD,可得∠BPE就是直线PB与平面PAD所成角.RtBPE中,利用三角函数的定义算出tanBPE,即得结果;

III)设FCM的中点,连结BFDF,由等腰BMC与等腰DMC有公共的底面,证出∠BFD为二面角BMCD的平面角.然后在BFD中,利用余弦定理,算出cosBFD,即得结果.

I)∵底面ABCD是菱形,∴ACBD

PA⊥平面ABCDBD平面ABCD,∴PABD

又∵ACPA是平面PAC内的相交直线,

∴直线BD⊥平面PAC

II)过BBEAD于点E,连结PE

PA⊥平面ABCDBE平面ABCD,∴PABE

BEADPAADA

BE⊥平面PAD,可得∠BPE就是直线PB与平面PAD所成角

RtBPE中,BEPE

tanBPE,即PB与平面PAD所成角的正切值等于

III)设FCM的中点,连结BFDF

∵△BMC中,BMBC,∴BFCM.同理可得DFCM

∴∠BFD就是二面角BMCD的平面角

BFD中,BD2BFDF

∴由余弦定理,得cosBFD

由此可得二面角BMCD的余弦值等于

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知三棱锥如图一)的平面展开图(如图二)中,四边形为边长等于的正方形均为正三角形,在三棱锥中:

(I)证明:平面平面

Ⅱ)若点在棱上运动,当直线与平面所成的角最大时,求二面角的余弦值.

图一

图二

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为(为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的方程,

1)求直线和圆的直角坐标方程;

3)设圆与直线交于点,若点的坐标为,求,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,左、右焦点为,点在椭圆上,且点关于原点对称,直线的斜率的乘积为.

(1)求椭圆的方程;

(2)已知直线经过点,且与椭圆交于不同的两点,若,判断直线的斜率是否为定值?若是,请求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论函数的单调性;

2)函数有两个极值点,且,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)设

若函数处的切线过点,求的值;

时,若函数上没有零点,求的取值范围;

2)设函数,且),求证:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为评估设备生产某种零件的性能,从设备生产零件的流水线上随机抽取100个零件作为样本,测量其直径后,整理得到如表:

直径/

58

59

61

62

63

64

65

66

67

68

69

70

71

73

合计

件数

1

1

3

5

6

19

33

18

4

4

2

1

2

1

100

经计算,样本的平均值,标准差,以频率值作为概率的估计值.

1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为,并根据以下不等式进行评判(表示相应事件的频率):①;②;③.评判规则为:若同时满足上述三个不等式,则设备性能等级为甲;仅满足其中两个,则设备性能等级为乙;若仅满足其中一个,则设备性能等级为丙;若全部不满足,则设备性能等级为丁.试判断设备的性能等级.

2)将直径小于等于或直径大于的零件认为是次品.

i)从设备的生产流水线上任意抽取2个零件,计算其中次品个数的数学期望

ii)从样本中任意抽取2个零件,计算其中次品个数的数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱的各棱长均为2,侧面 底面,侧棱与底面所成的角为

(Ⅰ)求直线与底面所成的角;

(Ⅱ)在线段上是否存在点,使得平面平面?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】5分)《九章算术》竹九节问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第五节的容积为( )

A. 1B. C. D.

查看答案和解析>>

同步练习册答案