【题目】在三角形中,,,是的中点,设.当时,____________.
【答案】
【解析】
由正弦定理得,,由此能
sinβ,cosβ,tanα=sin∠BAC=sin(α+β)得cosα,sinα,从而得到cos∠BAC,由此利用余弦定理能求出BC.
∵在△ABC中,AB=2,AC=4,是的中点,记∠CAD=α,∠BAD=β,
∴,,
∴sin,sin=CDsin∠ADC,
∵BD=CD,sin∠ADB=sin∠ADC,
∴sinα:sinβ=:CDsin∠ADC2:1.
即得sinβ,cosβ,
∴tanα=sin(α+β)=sinαcosβ+cosαsinβ
=sinα,
∴,
∴cos2α+cosα2,解得cosα,或cosα(舍),sinα,
∴sin∠BAC,cos∠BAC,
∴BC.
故答案为.
科目:高中数学 来源: 题型:
【题目】(2017-2018学年安徽省六安市第一中学高三上学期第二次月考)已知函数是偶函数.
(1)求的值;
(2)若函数的图象与直线没有交点,求的取值范围;
(3)若函数,是否存在实数使得的最小值为0,若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=4cos ωx·sin+a(ω>0)图象上最高点的纵坐标为2,且图象上相邻两个最高点的距离为π.
(1)求a和ω的值;
(2)求函数f(x)在[0,π]上的单调递减区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校艺术节对同一类的,,,四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:
甲说:“是或作品获得一等奖”;
乙说:“作品获得一等奖”;
丙说:“,两项作品未获得一等奖”;
丁说:“是作品获得一等奖”.
若这四位同学中只有两位说的话是对的,则获得一等奖的作品是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为普及学生安全逃生知识与安全防护能力,某学校高一年级举办了安全知识与安全逃生能力竞赛,该竞赛分为预赛和决赛两个阶段,预赛为笔试,决赛为技能比赛,现将所有参赛选手参加笔试的成绩(得分均为整数,满分为分)进行统计,制成如下频率分布表.
分数(分数段) | 频数(人数) | 频率 |
合计 |
(1)求表中,,,,的值;
(2)按规定,预赛成绩不低于分的选手参加决赛.已知高一(2)班有甲、乙两名同学取得决赛资格,记高一(2)班在决赛中进入前三名的人数为,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,AB//CD,且.
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,求二面角A-PB-C的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com