精英家教网 > 高中数学 > 题目详情
过抛物线y2=4x的顶点O作相互垂直的弦OA、OB,求抛物线顶点O在AB上的影射M的轨迹方程.?

解析:设A(x1,y1)、B(x2,y2),代入抛物线方程并作差得k AB= =,

∴直线AB的方程l AB:y-y1= (x-x1).?

注意到y12=4x1,y1y2=-16(∵k OA·k OB=-1,?

·=-1 =-1y1y2=-16),

即得(y1+y2)y+16=4x.

又直线OM的方程为y=- x,?

x2+y2-4x=0(x≠0)即为所求的轨迹方程.

温馨提示:由(*)消去y1+y2所得方程为所求,是因为由(*)解出x、y(用y1+y2作已知)得到的是点M的坐标,而点M的坐标的关系式(即消去y1+y2得x、y的关系)为动点M的轨迹方程.显然这样做与直接过渡其关系式是一样的.另外本题还可以设OA的斜率为k,类似于上面的方法求M的轨迹方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

倾斜角为
π
4
的直线过抛物线y2=4x的焦点且与抛物线交于A,B两点,则|AB|=(  )
A、
13
B、8
2
C、16
D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=4x的焦点F引两条互相垂直的直线AB、CD交抛物线于A、B、C、D四点.
(1)求当|AB|+|CD|取最小值时直线AB、CD的倾斜角的大小
(2)求四边形ACBD的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,O为坐标原点.若|AF|=3,则△AOB的面积为
3
2
2
3
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=4x的焦点F的直线交抛物线于A、B两点,点O是坐标原点,若|AF|=5,则△AOB的面积为(  )
A、5
B、
5
2
C、
3
2
D、
17
8

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=4x的焦点F的直线交抛物线于A、B两点,A、B两点在准线l上的射影分别为M.N,则∠MFN=(  )

查看答案和解析>>

同步练习册答案