精英家教网 > 高中数学 > 题目详情
对于命题P:存在一个常数M,使得不等式
a
2a+b
+
b
2b+a
≤M≤
a
a+2b
+
b
b+2a
对任意正数a,b恒成立.
(1)试猜想常数M的值,并予以证明;
(2)类比命题P,某同学猜想了正确命题Q:存在一个常数M,使得不等式
a
3a+b
+
b
3b+c
+
c
3c+a
≤M≤
a
a+3b
+
b
b+3c
+
c
c+3a
对任意正数a,b,c恒成立,观察命题P与命题Q的规律,请猜想与正数a,b,c,d相关的正确命题(不需要证明).
分析:(1)令a=b,得
2
3
≤M≤
2
3
,故M=
2
3
.  先用分析法证明
a
2a+b
+
b
2b+a
2
3
,同理可证明
2
3
a
a+2b
+
b
b+2a
,命题得证.
(2)利用类比推理可得,存在一个常数M,使得不等式
a
4a+b
+
b
4b+c
+
c
4c+d
+
d
4d+a
≤M≤
a
a+4b
+
b
b+4c
+
c
c+4d
+
d
d+4a
对任意正数a,b,c,d恒成立.
解答:解:(1)令a=b,得
2
3
≤M≤
2
3
,故M=
2
3
.  先证明
a
2a+b
+
b
2b+a
2
3

∵a>0,b>0,要证上式,只要证3a(2b+a)+3b(2a+b)≤2(2a+b)(2b+a),
即证a2+b2≥2ab,即证(a-b)2≥0,这显然成立.∴
a
2a+b
+
b
2b+a
2
3

再证明
2
3
a
a+2b
+
b
b+2a

∵a>0,b>0,要证上式,只要证3a(2a+b)+3b(2b+a)≥2(a+2b)(b+2a),
即证a2+b2≥2ab,即证(a-b)2≥0,这显然成立.∴
2
3
a
a+2b
+
b
b+2a

(2)存在一个常数M,使得不等式
a
4a+b
+
b
4b+c
+
c
4c+d
+
d
4d+a
≤M≤
a
a+4b
+
b
b+4c
+
c
c+4d
+
d
d+4a

对任意正数a,b,c,d恒成立.
点评:办呢题考查用分析法证明不等式,类比推理,找出M的值,是解题的突破口.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

对于命题P:存在一个常数M,使得不等式数学公式对任意正数a,b恒成立.
(1)试猜想常数M的值,并予以证明;
(2)类比命题P,某同学猜想了正确命题Q:存在一个常数M,使得不等式数学公式对任意正数a,b,c恒成立,观察命题P与命题Q的规律,请猜想与正数a,b,c,d相关的正确命题(不需要证明).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

对于命题P:存在一个常数M,使得不等式
a
2a+b
+
b
2b+a
≤M≤
a
a+2b
+
b
b+2a
对任意正数a,b恒成立.
(1)试猜想常数M的值,并予以证明;
(2)类比命题P,某同学猜想了正确命题Q:存在一个常数M,使得不等式
a
3a+b
+
b
3b+c
+
c
3c+a
≤M≤
a
a+3b
+
b
b+3c
+
c
c+3a
对任意正数a,b,c恒成立,观察命题P与命题Q的规律,请猜想与正数a,b,c,d相关的正确命题(不需要证明).

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省台州市高二(上)期末数学试卷(文科)(解析版) 题型:解答题

对于命题P:存在一个常数M,使得不等式对任意正数a,b恒成立.
(1)试猜想常数M的值,并予以证明;
(2)类比命题P,某同学猜想了正确命题Q:存在一个常数M,使得不等式对任意正数a,b,c恒成立,观察命题P与命题Q的规律,请猜想与正数a,b,c,d相关的正确命题(不需要证明).

查看答案和解析>>

科目:高中数学 来源:2008-2009学年浙江省金华市十校高二(上)期末数学试卷(文科)(解析版) 题型:解答题

对于命题P:存在一个常数M,使得不等式对任意正数a,b恒成立.
(1)试猜想常数M的值,并予以证明;
(2)类比命题P,某同学猜想了正确命题Q:存在一个常数M,使得不等式对任意正数a,b,c恒成立,观察命题P与命题Q的规律,请猜想与正数a,b,c,d相关的正确命题(不需要证明).

查看答案和解析>>

同步练习册答案