精英家教网 > 高中数学 > 题目详情
4.设函数f(x)=loga(3-ax)在区[0,2]是减函数,则a的取值范围是1$<a<\frac{3}{2}$.

分析 本题必须保证:①使loga(3-ax)有意义,即a>0且a≠1,3-ax>0.②使loga(3-ax)在[0,2]上是x的减函数.由于所给函数可分解为y=logau,u=3-ax,其中u=2-ax在a>0时为减函数,所以必须a>1;③[0,1]必须是y=loga(3-ax)定义域的子集.

解答 解:因为f(x)在[0,2]上是x的减函数,所以根据复合函数的单调性得出:$\left\{\begin{array}{l}{a>1}\\{3-2a>0}\end{array}\right.$
即1$<a<\frac{3}{2}$
故答案为:1<a<$\frac{3}{2}$

点评 本题综合了多个知识点,需要概念清楚,推理正确.(1)复合函数的单调性;(2)真数大于零

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.关于x的不等式$\frac{2x-3a}{x+2a}≤1(a<0)$的解集是(  )
A.[5a,-2a)B.(-∞,5a]∪(-2a,+∞)C.(-2a,5a]?D.(-∞,5a]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数g(x)=loga(x2-ax)在[2,3]上是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知f(x)=|x+2|+|x-1|.
(1)解不等式f(x)≥7;
(2)若关于x的不等式f(x)>2a2-a对任意的x∈R恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=loga$\frac{x-5}{x+5}$,(a>0且a≠1).
(1)求函数的定义域;
(2)判断f(x)的奇偶性,并加以证明;
(3)当a>0,f(x)<0,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=Asinωxcosφ+Acosωxsinφ(A>0,ω>0,-$\frac{π}{2}$<φ<0)图象的最高点为($\frac{3π}{8}$,$\sqrt{2}$),其图象的相邻两个对称中心的距离为$\frac{π}{2}$.
(Ⅰ)求A,ω,φ的值;
(Ⅱ)若f(a)=$\frac{3\sqrt{2}}{5}$,且a∈(-$\frac{π}{8}$,$\frac{3π}{8}$),求f(a+$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,△ABC中,AB=AC,∠BAC=90°,∠ABD=∠ACE,CE=BD,
求证:(1)△ADE也为等腰直角三角形;
(2)BD⊥CE.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知集合A={-2,3,5},B={-1,3},则A∪B={-2,-1,3,5}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x+$\frac{m}{x}$+1(m为实数).
(1)若m=0,则函数g(x)=$\frac{x+2}{f(x)}$的图象如何由函数y=$\frac{1}{x}$的图象变换而得?
(2)若m=-2,且方程f(x)=$\frac{k}{x}$在(-∞,0)上有两个不等的根,求实数k的取值范围;
(3)若函数y=f(x)在区间[3,+∞)上是增函数,试用函数单调性的定义求实数m的取值范围.

查看答案和解析>>

同步练习册答案