【题目】在平面直角坐标系中,①已知点,,为曲线上任一点,到点的距离和到点的距离的比值为2;②圆经过,,且圆心在直线上.从①②中任选一个条件.
(1)求曲线的方程;
(2)若直线被曲线截得弦长为2,求的值.
科目:高中数学 来源: 题型:
【题目】已知抛物线:,焦点,如果存在过点的直线与抛物线交于不同的两点.,使得,则称点为抛物线的“分点”.
(1)如果,直线:,求的值;
(2)如果为抛物线的“分点”,求直线的方程;
(3)证明点不是抛物线的“2分点”;
(4)如果是抛物线的“2分点”,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若方程所表示的曲线为,则下面四个选项中错误的是( )
A.若为椭圆,则B.若是双曲线,则其离心率有
C.若为双曲线,则或D.若为椭圆,且长轴在轴上,则
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平行四边形中,过点C的直线与线段、分别相交于点M、N,若,;
(1)求y关于x的函数解析式;
(2)定义函数(),点列(,)在函数的图像上,且数列是以1为首项,0.5为公比的等比数列,O为原点,令,是否存在点,使得?若存在,求出Q点的坐标,若不存在,说明理由;
(3)设函数为上的偶函数,当时,,又函数的图像关于直线对称,当方程在()上有两个不同的实数解时,求实数a的取值范围;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:的两个焦点分别为,点M(1,0)与椭圆短轴的两个端点的连线相互垂直.
(1)求椭圆C的方程;
(2)过点M(1,0)的直线与椭圆C相交于A、B两点,设点N(3,2),记直线AN、BN的斜率分别为k1、k2,求证:k1+k2为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,为左焦点,为上顶点,为右顶点,若,抛物线的顶点在坐标原点,焦点为.
(1)求的标准方程;
(2)是否存在过点的直线,与和交点分别是和,使得?如果存在,求出直线的方程;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若公差为的无穷等差数列的前项和为,则下列说法:(1)若,则数列有最大项;(2)若数列有最大项,则;(3)若数列是递增数列,则对任意都有;(4)若对任意都有,则数列是递增数列;其中正确的是______.(选序号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】焦点在x轴上的椭圆C:经过点,椭圆C的离心率为.,是椭圆的左、右焦点,P为椭圆上任意点.
(1)求椭圆的标准方程;
(2)若点M为的中点(O为坐标原点),过M且平行于OP的直线l交椭圆C于A,B两点,是否存在实数,使得;若存在,请求出的值,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com