精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥P-ABCD中,PA底面ABCD,底面ABCD为直角梯形,AD∥BC,∠BAD=90°,PA=AD=AB=2BC=2,过AD的平面分别交PB,PC于M,N两点.

(1)求证:MN∥BC;

(2)若M,N分别为PB,PC的中点,

求证:PB⊥DN;

求二面角P-DN-A的余弦值.

【答案】(1)见解析;(2)见解析,

【解析】

(1)先证明BC∥平面ADNM,再证明MN∥BC.(2)先证明PB⊥平面ADNM,再证明PB⊥DN. ②以A为坐标原点,直线AB为x轴,直线AD为y轴,直线AP为z轴,建立空间直角坐标系A-xyz,利用向量法求二面角P-DN-A的余弦值.

(1)证明因为底面ABCD为直角梯形,所以BC∥AD.

因为BC平面ADNM,AD平面ADNM,

所以BC∥平面ADNM.

因为BC平面PBC,平面PBC∩平面ADNM=MN,所以MN∥BC.

(2)①证明因为M,N分别为PB,PC的中点,PA=AB,所以PB⊥MA.

因为∠BAD=90°,所以DA⊥AB.

因为PA⊥底面ABCD,所以DA⊥PA.

因为PA∩AB=A,所以DA⊥平面PAB.

所以PB⊥DA.

因为AM∩DA=A,所以PB⊥平面ADNM.

因为DN平面ADNM,所以PB⊥DN.

②如图,以A为坐标原点,直线AB为x轴,直线AD为y轴,直线AP为z轴,建立空间直角坐标系A-xyz,

则A(0,0,0),B(2,0,0),C(2,1,0),D(0,2,0),P(0,0,2).

由①知,PB⊥平面ADNM,所以平面ADNM的法向量为=(-2,0,2).

设平面PDN的法向量为n=(x,y,z),

因为=(2,1,-2),=(0,2,-2),

所以

令z=2,则y=2,x=1.

所以n=(1,2,2),

所以cos<n,>=.

所以二面角P-DN-A的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC-A1B1C1中,∠ABC=,D是棱AC的中点,且AB=BC=BB1=2.

(1)求证:AB1平面BC1D;

(2)求异面直线AB1与BC1所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,若,则这三角形一定是( )

A. 等腰三角形 B. 直角三角形 C. 等腰直角三角形 D. 等腰或直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在Rt△ABC中,AB=BC=4,点E在线段AB上.过点E作EF∥BC交AC于点F,将△AEF沿EF折起到△PEF的位置(点A与P重合),使得∠PEB=60°.

(1)求证:EF⊥PB.

(2)试问:当点E在线段AB上移动时,二面角PFCB的平面角的余弦值是否为定值?若是,求出其定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下图所示,ABCD是边长为3的正方形,DE平面ABCD,AFDE,DE=3AF,BE与平面ABCD所成的角为60°.

(1)求证:AC平面BDE;

(2)求二面角F-BE-D的余弦值

(3)设点M是线段BD上一个动点,试确定点M的位置,使得AM平面BEF,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列关于概率和统计的几种说法:

10名工人某天生产同一种零件,生产的件数分别是15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则abc的大小关系为cab

②样本4,2,1,0,-2的标准差是2;

③在面积为S的△ABC内任选一点P,则随机事件“△PBC的面积小于”的概率为

④从写有0,1,2,,9的十张卡片中,有放回地每次抽一张,连抽两次,则两张卡片上的数字各不相同的概率是.

其中正确说法的序号有________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,椭圆E: =1(a>b>0)的左、右焦点分别为F1 , F2 , 离心率为 ,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1 , 过点F2作直线PF2的垂线l2
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)若直线l1 , l2的交点Q在椭圆E上,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)

如图1,在三棱锥PABC中,PA⊥平面ABCAC⊥BCD为侧棱PC上一点,它的正()视图和侧()视图如图2所示.

(1) 证明:AD⊥平面PBC

(2) ∠ACB的平分线上确定一点Q,使得PQ∥平面ABD,并求此时PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题p:关于x的方程x2ax20无实根,命题q:函数f(x)logax(0,+)上单调递增,若pq为假命题,pq真命题,求实数a的取值范围

查看答案和解析>>

同步练习册答案