精英家教网 > 高中数学 > 题目详情

如图,在等腰梯形ABCD中,AB=2DC=2,∠DAB=60°,E为AB的中

点.将△ADE与△BEC分别沿ED、EC向上折起,使A、B重合于点P,则三棱锥P-DCE的外接球的体积为(    )

A.    B.        C.             D.

 

【答案】

C

【解析】

试题分析:易证所得三棱锥为正四面体,它的棱长为1,

故外接球半径为,外接球的体积为,故选C.

故选C.

考点:球内接多面体;球的体积和表面积.

点评:本题考查球的内接多面体,球的体积等知识,考查逻辑思维能力,是中档题.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在等腰梯形ABCD中,AB∥DC,AB=4,CD=2,等腰梯形的高为3,O为AB中点,PO⊥平面ABCD,垂足为O,PO=2,EA∥PO.
(1)求证:BD⊥平面EAC;
(2)求二面角E-AC-P的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在等腰梯形CDEF中,CB、DA是梯形的高,AE=BF=2,AB=2
2
,现将梯形沿CB、DA折起,使EF∥AB,且EF=2AB,得一简单组合体ABCDEF如图所示,已知M、N、P分别为AF,BD,EF的中点.
(1)求证:MN∥平面BCF;
(2)求证:AP⊥平面DAE.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-1;几何证明选讲.
如图,在等腰梯形ABCD中,AD∥BC,AB=DC,过点D作AC的平行线DE,交BA的延长线于点E.
求证:DE•DC=AE•BD.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河北模拟)如图,在等腰梯形ABCD中,CD=2,AB=4,AD=BC=
2
,E、F分别为CD、AB中点,沿EF将梯形AFED折起,使得∠AFB=60°,点G为FB的中点.
(1)求证:AG⊥平面BCEF
(2)求DG的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在等腰梯形ABCD中,上底CD=3,下底AB=4,E、F分别为AB、CD中点,分别沿DE、CE把△ADE与△BCE折起,使A、B重合于点P.

(1)求证:PE⊥CD;
(2)若点P在面CDE的射影恰好是点F,求EF的长.

查看答案和解析>>

同步练习册答案