精英家教网 > 高中数学 > 题目详情
函数f(x)=xlnx的单调递增区间是(  )
分析:求f(x)=xlnx的导数f′(x),由f′(x)>0,即可求得答案.
解答:解:∵f′(x)=lnx+1,
令f′(x)>0得:lnx>-1,
∴x>e-1=
1
e

∴函数f(x)=xlnx的单调递增区间为(
1
e
,+∞).
故选B.
点评:本题考查利用导数研究函数的单调性,易错点在于忽视函数的定义域,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=xln|x|的图象大致是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xln(1+x)-a(x+1),其中a为实常数.
(1)当x∈[1,+∞)时,f′(x)>0恒成立,求a的取值范围;
(2)求函数g(x)=f′(x)-
ax1+x
的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=xln (x+2)-1的图象与x轴的交点个数为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=xln(ex+1)-
12
x2+3,x∈[-t,t]
(t>0),若函数f(x)的最大值是M,最小值是m,则M+m=
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•孝感模拟)已知函数f(x)=xln x.
(1)求函数f(x)的单调区间;
(2)k为正常数,设g(x)=f(x)+f(k-x),求函数g(x)的最小值;
(3)若a>0,b>0证明:f(a)+(a+b)ln2≥f(a+b)-f(b)

查看答案和解析>>

同步练习册答案